論文の概要: AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation
- arxiv url: http://arxiv.org/abs/2409.07779v2
- Date: Fri, 22 Nov 2024 09:28:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:57.155220
- Title: AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation
- Title(参考訳): AFFSegNet:マイクロチューブとマルチオーガンセグメンテーションのための適応型特徴融合セグメンテーションネットワーク
- Authors: Fuchen Zheng, Xinyi Chen, Xuhang Chen, Haolun Li, Xiaojiao Guo, Guoheng Huang, Chi-Man Pun, Shoujun Zhou,
- Abstract要約: 医用画像のセグメンテーションは、コンピュータビジョンにおいて重要な課題であり、診断、治療計画、疾患モニタリングにおける臨床医を支援する。
本稿では,局所的特徴とグローバルな特徴を効果的に統合し,正確な医用画像分割を実現するトランスフォーマアーキテクチャである適応意味ネットワーク(ASSNet)を提案する。
多臓器、肝腫瘍、膀胱腫瘍の分節を含む様々な医療画像の分節タスクに関するテストは、ATSNetが最先端の結果を達成することを実証している。
- 参考スコア(独自算出の注目度): 32.74195208408193
- License:
- Abstract: Medical image segmentation, a crucial task in computer vision, facilitates the automated delineation of anatomical structures and pathologies, supporting clinicians in diagnosis, treatment planning, and disease monitoring. Notably, transformers employing shifted window-based self-attention have demonstrated exceptional performance. However, their reliance on local window attention limits the fusion of local and global contextual information, crucial for segmenting microtumors and miniature organs. To address this limitation, we propose the Adaptive Semantic Segmentation Network (ASSNet), a transformer architecture that effectively integrates local and global features for precise medical image segmentation. ASSNet comprises a transformer-based U-shaped encoder-decoder network. The encoder utilizes shifted window self-attention across five resolutions to extract multi-scale features, which are then propagated to the decoder through skip connections. We introduce an augmented multi-layer perceptron within the encoder to explicitly model long-range dependencies during feature extraction. Recognizing the constraints of conventional symmetrical encoder-decoder designs, we propose an Adaptive Feature Fusion (AFF) decoder to complement our encoder. This decoder incorporates three key components: the Long Range Dependencies (LRD) block, the Multi-Scale Feature Fusion (MFF) block, and the Adaptive Semantic Center (ASC) block. These components synergistically facilitate the effective fusion of multi-scale features extracted by the decoder while capturing long-range dependencies and refining object boundaries. Comprehensive experiments on diverse medical image segmentation tasks, including multi-organ, liver tumor, and bladder tumor segmentation, demonstrate that ASSNet achieves state-of-the-art results. Code and models are available at: \url{https://github.com/lzeeorno/ASSNet}.
- Abstract(参考訳): コンピュータビジョンにおいて重要な課題である医用画像分割は、解剖学的構造と病理の自動化を促進させ、診断、治療計画、疾患モニタリングにおける臨床医を支援する。
特に、シフトウィンドウベースの自己注意を用いた変換器は、例外的な性能を示した。
しかし、局所的なウィンドウアテンションに依存しているため、局所的およびグローバルな文脈情報の融合が制限され、微小腫瘍や小器官の分節化に欠かせない。
この制限に対処するため,正確な医用画像分割のための局所的特徴とグローバル的特徴を効果的に統合するトランスフォーマアーキテクチャである適応セマンティックセマンティックセマンティックネットワーク(ASSNet)を提案する。
ASSNetはトランスフォーマーベースのU字型エンコーダデコーダネットワークである。
エンコーダは5つの解像度にわたるシフトウィンドウの自己アテンションを利用して、マルチスケールの特徴を抽出し、スキップ接続を通じてデコーダに伝播する。
エンコーダ内に拡張多層パーセプトロンを導入し,特徴抽出時の長距離依存性を明示的にモデル化する。
従来の対称型エンコーダ・デコーダ設計の制約を認識し,適応型特徴フュージョン(AFF)デコーダを提案する。
このデコーダには、Long Range Dependencies(LRD)ブロック、Multi-Scale Feature Fusion(MFF)ブロック、Adaptive Semantic Center(ASC)ブロックという3つの重要なコンポーネントが含まれている。
これらのコンポーネントは、長距離依存関係をキャプチャし、オブジェクト境界を精細化しながら、デコーダによって抽出されたマルチスケール機能の効果的な融合を相乗的に促進する。
多臓器、肝腫瘍、膀胱腫瘍の分節を含む様々な医療画像の分節タスクに関する総合的な実験は、ATSNetが最先端の結果を達成することを実証している。
コードとモデルは以下の通りである。
関連論文リスト
- MSA$^2$Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation [8.404273502720136]
MSA$2$Netは、スキップ接続を適切に設計した新しいディープセグメンテーションフレームワークである。
本稿では,空間的特徴を選択的に強調するために,MASAG(Multi-Scale Adaptive Space Attention Gate)を提案する。
MSA$2$Netは、最先端のSOTA(State-of-the-art)よりも優れています。
論文 参考訳(メタデータ) (2024-07-31T14:41:10Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
本稿では,畳み込みニューラルネットワークとトランスフォーマーアーキテクチャを組み合わせた2次元特徴抽出手法を提案する。
特に小臓器では, セグメンテーションの精度が向上した。
論文 参考訳(メタデータ) (2024-01-27T05:58:36Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unetは、医用画像セグメンテーション用のUnetライクなトランスフォーマーである。
トークン化されたイメージパッチは、TransformerベースのU字型デコーダデコーダアーキテクチャに供給される。
論文 参考訳(メタデータ) (2021-05-12T09:30:26Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
UNEt TRansformers(UNETR)と呼ばれる新しいアーキテクチャを導入し、純粋なトランスフォーマーをエンコーダとして入力ボリュームのシーケンス表現を学習します。
提案モデルの性能を様々なイメージング手法で広く検証しています。
論文 参考訳(メタデータ) (2021-03-18T20:17:15Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
畳み込みニューラルネットワーク(CNN)は、現代の3D医療画像セグメンテーションのデファクトスタンダードとなっている。
本稿では,bf畳み込みニューラルネットワークとbfトランスbf(cotr)を効率良く橋渡しし,正確な3次元医用画像分割を実現する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。