Quaternion Nuclear Norm minus Frobenius Norm Minimization for color image reconstruction
- URL: http://arxiv.org/abs/2409.07797v1
- Date: Thu, 12 Sep 2024 06:57:00 GMT
- Title: Quaternion Nuclear Norm minus Frobenius Norm Minimization for color image reconstruction
- Authors: Yu Guo, Guoqing Chen, Tieyong Zeng, Qiyu Jin, Michael Kwok-Po Ng,
- Abstract summary: Quaternion Nuclear Norm Minus Frobenius Norm Minimization (QNMF) is a novel approach for color image reconstruction.
By employing a regularization technique that involves nuclear norm minus Frobenius norm, QNMF approximates the underlying low-rank structure of quaternion-encoded color images.
- Score: 20.11953064373745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color image restoration methods typically represent images as vectors in Euclidean space or combinations of three monochrome channels. However, they often overlook the correlation between these channels, leading to color distortion and artifacts in the reconstructed image. To address this, we present Quaternion Nuclear Norm Minus Frobenius Norm Minimization (QNMF), a novel approach for color image reconstruction. QNMF utilizes quaternion algebra to capture the relationships among RGB channels comprehensively. By employing a regularization technique that involves nuclear norm minus Frobenius norm, QNMF approximates the underlying low-rank structure of quaternion-encoded color images. Theoretical proofs are provided to ensure the method's mathematical integrity. Demonstrating versatility and efficacy, the QNMF regularizer excels in various color low-level vision tasks, including denoising, deblurring, inpainting, and random impulse noise removal, achieving state-of-the-art results.
Related papers
- Quaternion Generative Adversarial Neural Networks and Applications to Color Image Inpainting [2.9409095383085386]
This paper proposes a Quaternion Geneversarative Adrial Neural Network (QGAN) model and related theory to solve the problem of color image inpainting with large area missing.
The experimental results show that QGAN has superiority in color image inpainting with large area missing.
arXiv Detail & Related papers (2024-06-17T14:04:17Z) - A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator [20.00683294783224]
Cross-channel deblurring problem in color image processing is difficult to solve due to complex coupling and structural blurring of color pixels.
We present a novel cross-space total variation (CSTV) regularization model for color image deblurring.
New L-curve method is proposed to find a sweet balance of regularization functionals on different color spaces.
arXiv Detail & Related papers (2024-05-20T15:29:26Z) - MVIP-NeRF: Multi-view 3D Inpainting on NeRF Scenes via Diffusion Prior [65.05773512126089]
NeRF inpainting methods built upon explicit RGB and depth 2D inpainting supervisions are inherently constrained by the capabilities of their underlying 2D inpainters.
We propose MVIP-NeRF that harnesses the potential of diffusion priors for NeRF inpainting, addressing both appearance and geometry aspects.
Our experimental results show better appearance and geometry recovery than previous NeRF inpainting methods.
arXiv Detail & Related papers (2024-05-05T09:04:42Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images.
We propose tempering the diffusion model'sity with per-scene customization and mitigating the textural shift with masked training.
Our framework yields state-of-the-art NeRF inpainting results on various real-world scenes.
arXiv Detail & Related papers (2024-04-15T17:59:57Z) - A Theoretically Guaranteed Quaternion Weighted Schatten p-norm
Minimization Method for Color Image Restoration [11.47644299959152]
We propose a novel quaternion-based WSNM model (QWSNM) for tackling the color image restoration problems.
Extensive experiments on two representative CIR tasks, including color image denoising and deblurring, demonstrate that the proposed QWSNM method performs favorably against many state-of-the-art alternatives.
arXiv Detail & Related papers (2023-07-24T09:54:49Z) - Quasi Non-Negative Quaternion Matrix Factorization with Application to
Color Face Recognition [0.0]
A novel quasi-negative quaternion matrix factorization (QNQMF) is presented for color image processing.
The accuracy of the rate of face recognition on the quaternion model is better than on the red, green and blue channels of color image.
arXiv Detail & Related papers (2022-11-30T04:51:09Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
Image recoloring is an emerging editing technique that can manipulate the color values of an image to give it a new style.
In this paper, we explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring.
Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
arXiv Detail & Related papers (2022-04-23T01:54:06Z) - Quaternion Optimized Model with Sparse Regularization for Color Image
Recovery [10.137095668835439]
This paper is inspired by an appreciation of the fact that different signal types, including audio formats and images, possess structures that are inherently sparse in respect of their respective bases.
Since color images can be processed as a whole in the quaternion domain, we depicted the sparsity of the color image in the quaternion discrete cosine transform (QDCT) domain.
To achieve a more superior low-rank approximation, the quatenrion-based truncated nuclear norm (QTNN) is employed in the proposed model.
arXiv Detail & Related papers (2022-04-19T03:07:12Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
We propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification.
MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images.
Experiments on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.
arXiv Detail & Related papers (2022-03-03T14:26:49Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.