論文の概要: Over-the-Air Federated Learning via Weighted Aggregation
- arxiv url: http://arxiv.org/abs/2409.07822v1
- Date: Thu, 12 Sep 2024 08:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:27:45.981582
- Title: Over-the-Air Federated Learning via Weighted Aggregation
- Title(参考訳): 重み付けアグリゲーションによるオーバー・ザ・エア・フェデレーション学習
- Authors: Seyed Mohammad Azimi-Abarghouyi, Leandros Tassiulas,
- Abstract要約: 本稿では, オーバー・ザ・エア計算を利用した新しいフェデレーション学習手法を提案する。
このスキームの新たな特徴は、アグリゲーション中に適応重みを用いるという提案である。
提案手法の収束を導出する数学的手法を提案する。
- 参考スコア(独自算出の注目度): 9.043019524847491
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper introduces a new federated learning scheme that leverages over-the-air computation. A novel feature of this scheme is the proposal to employ adaptive weights during aggregation, a facet treated as predefined in other over-the-air schemes. This can mitigate the impact of wireless channel conditions on learning performance, without needing channel state information at transmitter side (CSIT). We provide a mathematical methodology to derive the convergence bound for the proposed scheme in the context of computational heterogeneity and general loss functions, supplemented with design insights. Accordingly, we propose aggregation cost metrics and efficient algorithms to find optimized weights for the aggregation. Finally, through numerical experiments, we validate the effectiveness of the proposed scheme. Even with the challenges posed by channel conditions and device heterogeneity, the proposed scheme surpasses other over-the-air strategies by an accuracy improvement of 15% over the scheme using CSIT and 30% compared to the one without CSIT.
- Abstract(参考訳): 本稿では, オーバー・ザ・エア計算を利用した新しいフェデレーション学習手法を提案する。
このスキームの新たな特徴は、他のオーバー・ザ・エア方式で事前に定義されたファセットであるアグリゲーション中に適応重みを用いる提案である。
これにより、送信側(CSIT)のチャネル状態情報を必要とせずに、無線チャネル条件が学習性能に与える影響を軽減することができる。
本稿では,計算的不均一性と一般損失関数の文脈において,提案手法の収束境界を導出する数学的手法を提案する。
そこで本研究では,アグリゲーションに最適化された重みを求めるために,アグリゲーションコストの指標と効率的なアルゴリズムを提案する。
最後に,数値実験により提案手法の有効性を検証した。
チャネル条件やデバイスの不均一性によって生じる課題にも拘わらず,提案手法はCSITを使用する方式よりも15%精度が向上し,CSITのない方式に比べて30%精度が向上した。
関連論文リスト
- Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Boosting Fairness and Robustness in Over-the-Air Federated Learning [3.2088888904556123]
オーバー・ザ・エア・コンピューティングは5G以上の通信戦略である。
minmax最適化による公平性とロバスト性の提供を目的としたOver-the-Airフェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-07T12:03:04Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Matching Pursuit Based Scheduling for Over-the-Air Federated Learning [67.59503935237676]
本稿では,フェデレートラーニング手法を用いて,オーバー・ザ・エアラーニングのための低複雑さデバイススケジューリングアルゴリズムのクラスを開発する。
最先端の提案方式と比較すると,提案方式は極めて低効率なシステムである。
提案手法の有効性は,CIFARデータセットを用いた実験により確認した。
論文 参考訳(メタデータ) (2022-06-14T08:14:14Z) - Communication-Efficient Stochastic Zeroth-Order Optimization for
Federated Learning [28.65635956111857]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを共有せずに、グローバルモデルを協調的にトレーニングすることを可能にする。
FLの訓練効率を向上させるため,一階計算から一階法まで,様々なアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2022-01-24T08:56:06Z) - 1-Bit Compressive Sensing for Efficient Federated Learning Over the Air [32.14738452396869]
本稿では,1ビットセンシング(CS)をアナログアグリゲーション送信に組み込んだ,空気上の通信効率の高い学習手法を開発し,解析する。
スケーラブルコンピューティングでは,大規模ネットワークに適した効率的な実装を開発する。
シミュレーションの結果,提案した1ビットCSベースのFLは理想的な場合と同等の性能を示した。
論文 参考訳(メタデータ) (2021-03-30T03:50:31Z) - CSIT-Free Federated Edge Learning via Reconfigurable Intelligent Surface [25.30094403011711]
reSITインテリジェントエッジ(RIS)技術を活用して、CSITがエッジとするカスケードチャンネルを整列させます。
得られた非構成モデル凝集係数のアルゴリズムを開発する。
提案手法は、最先端のCSITベースのソリューションと同様の学習精度を実現することができる。
論文 参考訳(メタデータ) (2021-02-22T03:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。