論文の概要: ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable
- arxiv url: http://arxiv.org/abs/2409.07830v1
- Date: Thu, 12 Sep 2024 08:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 17:18:01.289329
- Title: ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable
- Title(参考訳): ReGentS: 現実の安全で批判的な運転シナリオをステアブルに
- Authors: Yuan Yin, Pegah Khayatan, Éloi Zablocki, Alexandre Boulch, Matthieu Cord,
- Abstract要約: 機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
- 参考スコア(独自算出の注目度): 88.08120417169971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data, hindering their large-scale deployment. While increasing real-world training data coverage could address this issue, it is costly and dangerous. This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization. We propose ReGentS, which stabilizes generated trajectories and introduces heuristics to avoid obvious collisions and optimization problems. Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner. We also extend the scenario generation framework to handle real-world data with up to 32 agents. Additionally, by using a differentiable simulator, our approach simplifies gradient descent-based optimization involving a simulator, paving the way for future advancements. The code is available at https://github.com/valeoai/ReGentS.
- Abstract(参考訳): 機械学習に基づく自律運転システムは、現実のデータでは稀な安全クリティカルなシナリオで課題に直面し、大規模なデプロイメントを妨げていることが多い。
実際のトレーニングデータカバレッジの増加はこの問題に対処する可能性があるが、コストがかかり危険である。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
本稿では,生成した軌道を安定化し,衝突や最適化の問題を避けるためにヒューリスティックスを導入するReGentSを提案する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
また、シナリオ生成フレームワークを拡張して、最大32個のエージェントで現実世界のデータを処理する。
さらに、微分可能シミュレータを用いて、シミュレータを含む勾配降下に基づく最適化を単純化し、将来の進歩への道を開く。
コードはhttps://github.com/valeoai/ReGentS.comで公開されている。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [2.773055342671194]
本研究では,自然主義的人間運転先行と強化学習技術を用いた自然逆シナリオ生成ソリューションを提案する。
本研究は,本モデルにより,自然性と逆性の両方をカバーする現実的な安全クリティカルなテストシナリオを生成できることを示す。
論文 参考訳(メタデータ) (2024-08-06T13:58:56Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - KING: Generating Safety-Critical Driving Scenarios for Robust Imitation
via Kinematics Gradients [39.9379344872937]
現在の運転シミュレータは、バックグラウンドトラフィックの「行動モデル」を示す。
手動のシナリオは通常、安全クリティカルな状況を引き起こすシミュレーション中に追加される。
ブラックボックス最適化よりも20%高い成功率で安全クリティカルな運転シナリオを生成するKINGを提案する。
論文 参考訳(メタデータ) (2022-04-28T17:48:48Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain
Randomization Reinforcement Learning [4.040937987024427]
ドメインランダム化(DR)は、このギャップをほとんど、あるいは全く現実世界のデータで埋めることのできる方法論である。
シミュレーションで訓練されたDeepRLベースの自動運転車を強固にするために、敵対モデルが提案されている。
論文 参考訳(メタデータ) (2021-07-25T09:15:46Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。