論文の概要: MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs
- arxiv url: http://arxiv.org/abs/2404.13884v2
- Date: Fri, 24 May 2024 08:47:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:27:27.303227
- Title: MambaUIE&SR: Unraveling the Ocean's Secrets with Only 2.8 GFLOPs
- Title(参考訳): MambaUIE&SR:2.8 GFLOPsで海の秘密を解き放つ
- Authors: Zhihao Chen, Yiyuan Ge,
- Abstract要約: 水中画像強調(UIE)技術は,光吸収・散乱による水中画像劣化問題に対処することを目的としている。
近年、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースの手法が広く研究されている。
MambaUIEは、グローバルおよびローカル情報を効率的に合成することができ、非常に少数のパラメータを高い精度で保持する。
- 参考スコア(独自算出の注目度): 1.7648680700685022
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Underwater Image Enhancement (UIE) techniques aim to address the problem of underwater image degradation due to light absorption and scattering. In recent years, both Convolution Neural Network (CNN)-based and Transformer-based methods have been widely explored. In addition, combining CNN and Transformer can effectively combine global and local information for enhancement. However, this approach is still affected by the secondary complexity of the Transformer and cannot maximize the performance. Recently, the state-space model (SSM) based architecture Mamba has been proposed, which excels in modeling long distances while maintaining linear complexity. This paper explores the potential of this SSM-based model for UIE from both efficiency and effectiveness perspectives. However, the performance of directly applying Mamba is poor because local fine-grained features, which are crucial for image enhancement, cannot be fully utilized. Specifically, we customize the MambaUIE architecture for efficient UIE. Specifically, we introduce visual state space (VSS) blocks to capture global contextual information at the macro level while mining local information at the micro level. Also, for these two kinds of information, we propose a Dynamic Interaction Block (DIB) and Spatial feed-forward Network (SGFN) for intra-block feature aggregation. MambaUIE is able to efficiently synthesize global and local information and maintains a very small number of parameters with high accuracy. Experiments on UIEB datasets show that our method reduces GFLOPs by 67.4% (2.715G) relative to the SOTA method. To the best of our knowledge, this is the first UIE model constructed based on SSM that breaks the limitation of FLOPs on accuracy in UIE. The official repository of MambaUIE at https://github.com/1024AILab/MambaUIE.
- Abstract(参考訳): 水中画像強調(UIE)技術は,光吸収・散乱による水中画像劣化問題に対処することを目的としている。
近年、畳み込みニューラルネットワーク(CNN)とトランスフォーマーベースの手法が広く研究されている。
さらに、CNNとTransformerを組み合わせることで、グローバルとローカルの情報を効果的に組み合わせて強化することができる。
しかし、このアプローチはTransformerの二次的な複雑さの影響を受けており、パフォーマンスを最大化することはできない。
近年,状態空間モデル(SSM)に基づくアーキテクチャであるMambaが提案されている。
本稿では、このSSMベースのUIEモデルの可能性について、効率性と有効性の両方の観点から検討する。
しかし, 画像強調に欠かせない局所的なきめ細かい特徴を十分に活用できないため, 直接マンバを施す性能は低い。
具体的には、効率的なUIEのためにMambaUIEアーキテクチャをカスタマイズする。
具体的には、ローカル情報をマイクロレベルでマイニングしながら、マクロレベルでグローバルなコンテキスト情報をキャプチャするために、視覚状態空間(VSS)ブロックを導入する。
また、これらの2種類の情報に対して、ブロック内特徴集約のための動的相互作用ブロック(DIB)と空間フィードフォワードネットワーク(SGFN)を提案する。
MambaUIEは、グローバルおよびローカル情報を効率的に合成することができ、非常に少数のパラメータを高い精度で保持する。
UIEBデータセットを用いた実験により,本手法はSOTA法と比較してGFLOPsを67.4%削減することがわかった。
我々の知る限りでは、これはSSMに基づいて構築された最初のUIEモデルであり、UIEの精度に関するFLOPの制限を破るものです。
MambaUIE at https://github.com/1024AILab/MambaUIE.com
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters [12.182070604073585]
CNNは、画像のセマンティック情報を完全に活用する能力を制限して、長距離依存のモデリングに苦労する。
変換器は二次計算の複雑さによって妨げられる。
本稿では,Mambaアーキテクチャに基づくモデルを提案する。
論文 参考訳(メタデータ) (2024-09-12T10:01:33Z) - UNetMamba: An Efficient UNet-Like Mamba for Semantic Segmentation of High-Resolution Remote Sensing Images [4.9571046933387395]
UNetMambaは、MambaをベースにしたUNetに似たセマンティックセグメンテーションモデルである。
UNetMambaは、mIoUによる最先端の手法よりも、LoveDAでは0.87%、ISPRS Vaihingenでは0.39%向上している。
論文 参考訳(メタデータ) (2024-08-21T11:53:53Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - Mamba-UIE: Enhancing Underwater Images with Physical Model Constraint [6.2101866921752285]
水中画像強調(UIE)では、畳み込みニューラルネットワーク(CNN)は長距離依存関係のモデリングに固有の制限がある。
本研究では,物理モデルによる制約に基づく水中画像強調フレームワークであるMamba-UIEを提案する。
提案したMamba-UIEは既存の最先端手法よりも優れており,PSNRは27.13で,SSIMは0.93である。
論文 参考訳(メタデータ) (2024-07-27T13:22:10Z) - Mamba-based Light Field Super-Resolution with Efficient Subspace Scanning [48.99361249764921]
4次元光場(LF)超解像において,トランスフォーマー法は優れた性能を示した。
しかし、その二次的な複雑さは、高解像度の4D入力の効率的な処理を妨げる。
我々は,効率的な部分空間走査戦略を設計し,マンバをベースとした光場超解法 MLFSR を提案する。
論文 参考訳(メタデータ) (2024-06-23T11:28:08Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
本稿では,CNN と Transformer を統合化して,画像デライニングにおける学習のメリットを活用することを目的とする。
降雨除去と背景復旧を関連づける新しいマルチインプット・アテンション・モジュール (MAM) を提案する。
提案手法(ELF)は,最先端手法(MPRNet)を平均0.25dB向上させる。
論文 参考訳(メタデータ) (2022-07-21T12:50:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。