Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2409.07972v2
- Date: Mon, 7 Oct 2024 04:17:01 GMT
- Title: Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
- Authors: Yuan Wu, Zhiqiang Yan, Zhengxue Wang, Xiang Li, Le Hui, Jian Yang,
- Abstract summary: We present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features.
On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames.
- Score: 28.071645239063553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Code is available at https://github.com/yanzq95/DHD.
Related papers
- General Geometry-aware Weakly Supervised 3D Object Detection [62.26729317523975]
A unified framework is developed for learning 3D object detectors from RGB images and associated 2D boxes.
Experiments on KITTI and SUN-RGBD datasets demonstrate that our method yields surprisingly high-quality 3D bounding boxes with only 2D annotation.
arXiv Detail & Related papers (2024-07-18T17:52:08Z) - Regulating Intermediate 3D Features for Vision-Centric Autonomous
Driving [26.03800936700545]
We propose to regulate intermediate dense 3D features with the help of volume rendering.
Experimental results on the Occ3D and nuScenes datasets demonstrate that Vampire facilitates fine-grained and appropriate extraction of dense 3D features.
arXiv Detail & Related papers (2023-12-19T04:09:05Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - DFA3D: 3D Deformable Attention For 2D-to-3D Feature Lifting [28.709044035867596]
We propose a new operator, called 3D DeFormable Attention (DFA3D), for 2D-to-3D feature lifting.
DFA3D transforms multi-view 2D image features into a unified 3D space for 3D object detection.
arXiv Detail & Related papers (2023-07-24T17:49:11Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3D scene understanding plays a vital role in vision-based autonomous driving.
We propose a SurroundOcc method to predict the 3D occupancy with multi-camera images.
arXiv Detail & Related papers (2023-03-16T17:59:08Z) - Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic
Segmentation [3.5939555573102853]
Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network.
We propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions.
Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks.
arXiv Detail & Related papers (2022-04-15T17:10:48Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
Many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data.
We propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions.
We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance.
arXiv Detail & Related papers (2021-07-08T17:55:01Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Bidirectional Projection Network for Cross Dimension Scene Understanding [69.29443390126805]
We present a emphbidirectional projection network (BPNet) for joint 2D and 3D reasoning in an end-to-end manner.
Via the emphBPM, complementary 2D and 3D information can interact with each other in multiple architectural levels.
Our emphBPNet achieves top performance on the ScanNetV2 benchmark for both 2D and 3D semantic segmentation.
arXiv Detail & Related papers (2021-03-26T08:31:39Z) - 3D Crowd Counting via Geometric Attention-guided Multi-View Fusion [50.520192402702015]
We propose to solve the multi-view crowd counting task through 3D feature fusion with 3D scene-level density maps.
Compared to 2D fusion, the 3D fusion extracts more information of the people along the z-dimension (height), which helps to address the scale variations across multiple views.
The 3D density maps still preserve the 2D density maps property that the sum is the count, while also providing 3D information about the crowd density.
arXiv Detail & Related papers (2020-03-18T11:35:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.