論文の概要: Heterogeneous Sheaf Neural Networks
- arxiv url: http://arxiv.org/abs/2409.08036v1
- Date: Thu, 12 Sep 2024 13:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:29:19.305844
- Title: Heterogeneous Sheaf Neural Networks
- Title(参考訳): 不均一せん断ニューラルネットワーク
- Authors: Luke Braithwaite, Iulia Duta, Pietro Liò,
- Abstract要約: 不均一グラフは、多くの実世界の応用における関係構造をモデル化するために一般的に用いられる。
グラフの基盤となるトポロジにおける不均一性をモデル化するために,細胞シーブを用いることを提案する。
HetSheafは、ヘテロジニアス層ニューラルネットワークの一般的なフレームワークであり、ヘテロジニアス層予測器のシリーズを紹介する。
- 参考スコア(独自算出の注目度): 17.664754528494132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous graphs, with nodes and edges of different types, are commonly used to model relational structures in many real-world applications. Standard Graph Neural Networks (GNNs) struggle to process heterogeneous data due to oversmoothing. Instead, current approaches have focused on accounting for the heterogeneity in the model architecture, leading to increasingly complex models. Inspired by recent work, we propose using cellular sheaves to model the heterogeneity in the graph's underlying topology. Instead of modelling the data as a graph, we represent it as cellular sheaves, which allows us to encode the different data types directly in the data structure, eliminating the need to inject them into the architecture. We introduce HetSheaf, a general framework for heterogeneous sheaf neural networks, and a series of heterogeneous sheaf predictors to better encode the data's heterogeneity into the sheaf structure. Finally, we empirically evaluate HetSheaf on several standard heterogeneous graph benchmarks, achieving competitive results whilst being more parameter-efficient.
- Abstract(参考訳): 異なるタイプのノードとエッジを持つ不均一グラフは、多くの実世界のアプリケーションでリレーショナル構造をモデル化するために一般的に使用される。
標準グラフニューラルネットワーク(GNN)は、過剰なスムーシングによる異種データ処理に苦慮している。
代わりに、現在のアプローチでは、モデルアーキテクチャの不均一性を考慮することに重点を置いている。
最近の研究に触発されて、我々はセルラーシーブを用いて、グラフの基盤となるトポロジーの不均一性をモデル化する。
データをグラフとしてモデル化するのではなく、セルラーシーブとして表現することで、さまざまなデータ型をデータ構造に直接エンコードし、アーキテクチャに注入する必要がなくなるのです。
HetSheafは、ヘテロジニアス層ニューラルネットワークの一般的なフレームワークであり、ヘテロジニアス層予測器のシリーズを導入し、データのヘテロジニアスをシーフ構造にエンコードする。
最後に、HetSheafをいくつかの標準不均一グラフベンチマークで実証的に評価し、よりパラメータ効率の良い競合結果を得る。
関連論文リスト
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
ホモフィリ原理では、同じラベルや類似属性を持つieノードが接続される可能性が高い。
最近の研究で、GNNのパフォーマンスとNNのパフォーマンスが満足できない非自明なデータセットが特定されている。
論文 参考訳(メタデータ) (2024-07-12T18:04:32Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
異なるクラス間のホモフィリー分布の差は、ホモフィリックグラフやヘテロフィリックグラフよりも著しく大きい。
我々は、この現象を定量的に記述した、クラスホモフィリーバリアンスと呼ばれる新しい計量を導入する。
その影響を軽減するために,ホモフィリーエッジ生成グラフニューラルネットワーク(HedGe)と呼ばれる新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2024-03-15T14:26:53Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
不均一グラフ学習は、異種グラフ内のエンティティ間の複雑な関係や多様な意味を捉えることを目的としている。
異種グラフ学習のための既存のフレームワークは、多種多様な異種グラフデータセットをまたいだ一般化に制限がある。
異種グラフ命令チューニングパラダイムを用いた一般的なグラフモデルであるHiGPTを提案する。
論文 参考訳(メタデータ) (2024-02-25T08:07:22Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
本稿では,グラフニューラルネットワーク (GNN) とGAN (Generative Adrial Network) を組み合わせた新しいフレームワークを提案する。
このフレームワークには高度なエッジ生成と選択モジュールが含まれており、合成ノードとエッジを同時に生成することができる。
論文 参考訳(メタデータ) (2023-12-11T16:52:20Z) - Homophily modulates double descent generalization in graph convolution
networks [33.703222768801574]
グラフノイズ,特徴雑音,トレーニングラベル数との相互作用によって,リスクがどのように形成されるかを示す。
我々は解析的洞察を用いて、異種データセット上での最先端グラフ畳み込みネットワークの性能を向上させる。
論文 参考訳(メタデータ) (2022-12-26T09:57:09Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Heterogeneous Graph Transformer [49.675064816860505]
Webスケールの不均一グラフモデリングのための不均一グラフ変換器(HGT)アーキテクチャ
動的ヘテロジニアスグラフを扱うために、HGTに相対時間符号化手法を導入する。
Web スケールのグラフデータを扱うため,ヘテロジニアスなミニバッチグラフサンプリングアルゴリズム--HGSampling--を設計し,効率的かつスケーラブルなトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-03T04:49:21Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。