Anonymized Network Sensing Graph Challenge
- URL: http://arxiv.org/abs/2409.08115v1
- Date: Thu, 12 Sep 2024 15:07:16 GMT
- Title: Anonymized Network Sensing Graph Challenge
- Authors: Hayden Jananthan, Michael Jones, William Arcand, David Bestor, William Bergeron, Daniel Burrill, Aydin Buluc, Chansup Byun, Timothy Davis, Vijay Gadepally, Daniel Grant, Michael Houle, Matthew Hubbell, Piotr Luszczek, Peter Michaleas, Lauren Milechin, Chasen Milner, Guillermo Morales, Andrew Morris, Julie Mullen, Ritesh Patel, Alex Pentland, Sandeep Pisharody, Andrew Prout, Albert Reuther, Antonio Rosa, Gabriel Wachman, Charles Yee, Jeremy Kepner,
- Abstract summary: The anonymized network sensing Graph Challenge seeks to enable large, open, community-based approaches to protecting networks.
This challenge provides an opportunity to highlight novel approaches for optimizing the construction and analysis of anonymized traffic matrices.
A GraphBLAS reference implementation is provided, but the use of GraphBLAS is not required in this Graph Challenge.
- Score: 6.896725738630828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The MIT/IEEE/Amazon GraphChallenge encourages community approaches to developing new solutions for analyzing graphs and sparse data derived from social media, sensor feeds, and scientific data to discover relationships between events as they unfold in the field. The anonymized network sensing Graph Challenge seeks to enable large, open, community-based approaches to protecting networks. Many large-scale networking problems can only be solved with community access to very broad data sets with the highest regard for privacy and strong community buy-in. Such approaches often require community-based data sharing. In the broader networking community (commercial, federal, and academia) anonymized source-to-destination traffic matrices with standard data sharing agreements have emerged as a data product that can meet many of these requirements. This challenge provides an opportunity to highlight novel approaches for optimizing the construction and analysis of anonymized traffic matrices using over 100 billion network packets derived from the largest Internet telescope in the world (CAIDA). This challenge specifies the anonymization, construction, and analysis of these traffic matrices. A GraphBLAS reference implementation is provided, but the use of GraphBLAS is not required in this Graph Challenge. As with prior Graph Challenges the goal is to provide a well-defined context for demonstrating innovation. Graph Challenge participants are free to select (with accompanying explanation) the Graph Challenge elements that are appropriate for highlighting their innovations.
Related papers
- JPEC: A Novel Graph Neural Network for Competitor Retrieval in Financial Knowledge Graphs [2.756147934836574]
This study explores the application of graph embedding in identifying competitors from a financial knowledge graph.
We propose a novel graph embedding model, JPEC(JPMorgan Proximity Embedding for Competitor Detection), which utilizes graph neural network to learn from both first-order and second-order node proximity.
arXiv Detail & Related papers (2024-11-05T00:39:22Z) - Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach [12.451324619122405]
This paper introduces a method to extract a smaller, task-focused subgraph that maintains key information while reducing communication overhead.
Our approach utilizes graph neural networks (GNNs) and the graph information bottleneck (GIB) principle to create a compact, informative, and robust graph representation suitable for transmission.
arXiv Detail & Related papers (2024-09-04T14:01:56Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - Mastering Spatial Graph Prediction of Road Networks [18.321172168775472]
We propose a graph-based framework that simulates the addition of sequences of graph edges.
In particular, given a partially generated graph associated with a satellite image, an RL agent nominates modifications that maximize a cumulative reward.
arXiv Detail & Related papers (2022-10-03T11:26:09Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Graph Generative Model for Benchmarking Graph Neural Networks [73.11514658000547]
We introduce a novel graph generative model that learns and reproduces the distribution of real-world graphs in a privacy-controlled way.
Our model can successfully generate privacy-controlled, synthetic substitutes of large-scale real-world graphs that can be effectively used to benchmark GNN models.
arXiv Detail & Related papers (2022-07-10T06:42:02Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - QD-GCN: Query-Driven Graph Convolutional Networks for Attributed
Community Search [54.42038098426504]
QD-GCN is an end-to-end framework that unifies the community structure as well as node attributes to solve the ACS problem.
We show that QD-GCN outperforms existing attributed community search algorithms in terms of both efficiency and effectiveness.
arXiv Detail & Related papers (2021-04-08T07:52:48Z) - Graph Representation Learning Network via Adaptive Sampling [4.996520403438455]
Graph Attention Network (GAT) and GraphSAGE are neural network architectures that operate on graph-structured data.
One challenge raised by GraphSAGE is how to smartly combine neighbour features based on graph structure.
We propose a new architecture to address these issues that is more efficient and is capable of incorporating different edge type information.
arXiv Detail & Related papers (2020-06-08T14:36:20Z) - Adversarial Attack on Community Detection by Hiding Individuals [68.76889102470203]
We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models.
We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model.
arXiv Detail & Related papers (2020-01-22T09:50:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.