Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation
- URL: http://arxiv.org/abs/2409.08171v1
- Date: Thu, 12 Sep 2024 16:03:56 GMT
- Title: Low-Cost Tree Crown Dieback Estimation Using Deep Learning-Based Segmentation
- Authors: M. J. Allen, D. Moreno-Fernández, P. Ruiz-Benito, S. W. D. Grieve, E. R. Lines,
- Abstract summary: We use an approach based on deep learning and vegetation indices to assess crown dieback from RGB aerial data without the need for expensive instrumentation such as LiDAR.
We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional technical development of the underlying Mask R-CNN model.
Our findings demonstrate the potential of automated data collection and processing, including the application of deep learning, to improve the coverage, speed and cost of forest dieback monitoring.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global increase in observed forest dieback, characterised by the death of tree foliage, heralds widespread decline in forest ecosystems. This degradation causes significant changes to ecosystem services and functions, including habitat provision and carbon sequestration, which can be difficult to detect using traditional monitoring techniques, highlighting the need for large-scale and high-frequency monitoring. Contemporary developments in the instruments and methods to gather and process data at large-scales mean this monitoring is now possible. In particular, the advancement of low-cost drone technology and deep learning on consumer-level hardware provide new opportunities. Here, we use an approach based on deep learning and vegetation indices to assess crown dieback from RGB aerial data without the need for expensive instrumentation such as LiDAR. We use an iterative approach to match crown footprints predicted by deep learning with field-based inventory data from a Mediterranean ecosystem exhibiting drought-induced dieback, and compare expert field-based crown dieback estimation with vegetation index-based estimates. We obtain high overall segmentation accuracy (mAP: 0.519) without the need for additional technical development of the underlying Mask R-CNN model, underscoring the potential of these approaches for non-expert use and proving their applicability to real-world conservation. We also find colour-coordinate based estimates of dieback correlate well with expert field-based estimation. Substituting ground truth for Mask R-CNN model predictions showed negligible impact on dieback estimates, indicating robustness. Our findings demonstrate the potential of automated data collection and processing, including the application of deep learning, to improve the coverage, speed and cost of forest dieback monitoring.
Related papers
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - Extreme Gradient Boosting for Yield Estimation compared with Deep
Learning Approaches [0.0]
We propose a pipeline to process remote sensing images into feature-based representations that allow the employment of Extreme Gradient Boosting (XGBoost) for yield prediction.
A comparative evaluation of soybean yield prediction within the United States shows promising prediction accuracies compared to state-of-the-art yield prediction systems based on Deep Learning.
arXiv Detail & Related papers (2022-08-26T12:48:18Z) - Unsupervised Spike Depth Estimation via Cross-modality Cross-domain Knowledge Transfer [53.413305467674434]
We introduce open-source RGB data to support spike depth estimation, leveraging its annotations and spatial information.
We propose a cross-modality cross-domain (BiCross) framework to realize unsupervised spike depth estimation.
Our method achieves state-of-the-art (SOTA) performances, compared with RGB-oriented unsupervised depth estimation methods.
arXiv Detail & Related papers (2022-08-26T09:35:20Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - A Real-time Edge-AI System for Reef Surveys [6.070670469403929]
Crown-of-Thorn Starfish (COTS) outbreaks are a major cause of coral loss on the Great Barrier Reef.
We present a comprehensive real-time machine learning-based underwater data collection and curation system on edge devices for COTS monitoring.
arXiv Detail & Related papers (2022-08-01T04:06:14Z) - Deep Learning Based 3D Point Cloud Regression for Estimating Forest
Biomass [15.956463815168034]
Knowledge of forest biomass stocks and their development is important for implementing effective climate change mitigation measures.
Remote sensing using airborne LiDAR can be used to measure vegetation biomass at large scale.
We present deep learning systems for predicting wood volume, above-ground biomass (AGB), and subsequently carbon directly from 3D LiDAR point cloud data.
arXiv Detail & Related papers (2021-12-21T16:26:13Z) - Detection and Prediction of Nutrient Deficiency Stress using
Longitudinal Aerial Imagery [3.5417999811721677]
Early, precise detection of nutrient deficiency stress (NDS) has key economic as well as environmental impact precision.
We collect sequences of high-resolution aerial imagery and construct semantic segmentation models to detect and predict NDS across the field.
This work contributes to the recent developments in deep learning for remote sensing and agriculture, while addressing a key social challenge with implications for economics and sustainability.
arXiv Detail & Related papers (2020-12-17T15:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.