論文の概要: Multi-Model based Federated Learning Against Model Poisoning Attack: A Deep Learning Based Model Selection for MEC Systems
- arxiv url: http://arxiv.org/abs/2409.08237v1
- Date: Thu, 12 Sep 2024 17:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 15:35:07.480393
- Title: Multi-Model based Federated Learning Against Model Poisoning Attack: A Deep Learning Based Model Selection for MEC Systems
- Title(参考訳): モデルポジショニング攻撃に対するマルチモデルに基づくフェデレート学習:MECシステムのための深層学習に基づくモデル選択
- Authors: Somayeh Kianpisheh, Chafika Benzaid, Tarik Taleb,
- Abstract要約: フェデレートラーニング(FL)は、データプライバシを保持しながら、分散データからグローバルモデルのトレーニングを可能にする。
本稿では, モデル中毒対策の機会を高めるための積極的メカニズムとして, マルチモデルFLを提案する。
DDoS攻撃検出のシナリオでは、システムは攻撃を受けないというシナリオと、認識時間の改善の可能性によって、毒殺攻撃下での競争精度の向上が示される。
- 参考スコア(独自算出の注目度): 11.564289367348334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables training of a global model from distributed data, while preserving data privacy. However, the singular-model based operation of FL is open with uploading poisoned models compatible with the global model structure and can be exploited as a vulnerability to conduct model poisoning attacks. This paper proposes a multi-model based FL as a proactive mechanism to enhance the opportunity of model poisoning attack mitigation. A master model is trained by a set of slave models. To enhance the opportunity of attack mitigation, the structure of client models dynamically change within learning epochs, and the supporter FL protocol is provided. For a MEC system, the model selection problem is modeled as an optimization to minimize loss and recognition time, while meeting a robustness confidence. In adaption with dynamic network condition, a deep reinforcement learning based model selection is proposed. For a DDoS attack detection scenario, results illustrate a competitive accuracy gain under poisoning attack with the scenario that the system is without attack, and also a potential of recognition time improvement.
- Abstract(参考訳): フェデレートラーニング(FL)は、データプライバシを保持しながら、分散データからグローバルモデルのトレーニングを可能にする。
しかし、FLの特異モデルに基づく操作は、グローバルモデル構造と互換性のある有毒モデルをアップロードすることでオープンであり、モデル中毒攻撃を行う脆弱性として利用することができる。
本稿では, モデル中毒対策の機会を高めるための積極的メカニズムとして, マルチモデルFLを提案する。
マスターモデルは、一連のスレーブモデルによって訓練される。
攻撃緩和の機会を高めるため、学習エポック内でクライアントモデルの構造が動的に変化し、支援者FLプロトコルを提供する。
MECシステムの場合、モデル選択問題はロバストネスの信頼性を満たしつつ、損失と認識時間を最小化する最適化としてモデル化される。
動的ネットワーク条件に適応して、深層強化学習に基づくモデル選択を提案する。
DDoS攻撃検出のシナリオでは、システムは攻撃を受けないというシナリオと、認識時間の改善の可能性によって、毒殺攻撃下での競争精度の向上が示される。
関連論文リスト
- Identify Backdoored Model in Federated Learning via Individual Unlearning [7.200910949076064]
裏口攻撃は、フェデレートラーニング(FL)の堅牢性に重大な脅威をもたらす
FLにおける悪意のあるモデルを特定するために,ローカルモデル上で個別の未学習を利用する手法であるMASAを提案する。
私たちの知る限りでは、FLの悪意あるモデルを特定するために機械学習を活用するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-11-01T21:19:47Z) - Towards Trustworthy Web Attack Detection: An Uncertainty-Aware Ensemble Deep Kernel Learning Model [4.791983040541727]
本稿では,Web攻撃を検出するために,不確実性を意識したEnsemble Deep Kernel Learning(UEDKL)モデルを提案する。
提案したUEDKLは、ディープカーネル学習モデルを用いて、通常のHTTPリクエストと異なるタイプのWeb攻撃を区別する。
BDCIとSRBHデータセットの実験により、提案したUEDKLフレームワークは、Web攻撃検出性能と不確実性推定品質の両方に大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2024-10-10T08:47:55Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
本稿では、利用可能なデータからシステムダイナミクスを推定し、仮想モデルロールアウトにおけるポリシー最適化を行うモデルベース強化学習アルゴリズムについて考察する。
このアプローチは、実際のシステムで破滅的な失敗を引き起こす可能性のあるモデルエラーを悪用することに対して脆弱である。
D4RLベンチマークの1つのよく校正された自己回帰モデルにより、より良い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-02-05T10:18:15Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Predictable MDP Abstraction for Unsupervised Model-Based RL [93.91375268580806]
予測可能なMDP抽象化(PMA)を提案する。
元のMDPで予測モデルを訓練する代わりに、学習されたアクション空間を持つ変換MDPでモデルを訓練する。
我々はPMAを理論的に解析し、PMAが以前の教師なしモデルベースRLアプローチよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-02-08T07:37:51Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
そこで本研究では,対象モデルからより高速に学習するための代用モデルの促進を目的とした,新しい動的代用トレーニング攻撃手法を提案する。
タスク駆動型グラフに基づく構造情報学習の制約を導入し、生成したトレーニングデータの質を向上させる。
論文 参考訳(メタデータ) (2022-04-03T02:29:11Z) - DaST: Data-free Substitute Training for Adversarial Attacks [55.76371274622313]
本研究では,敵対的ブラックボックス攻撃の代替モデルを得るためのデータフリー代替訓練法(DaST)を提案する。
これを実現するため、DaSTは特別に設計されたGANを用いて代替モデルを訓練する。
実験では、代替モデルがベースラインモデルと比較して競争性能を発揮することを示した。
論文 参考訳(メタデータ) (2020-03-28T04:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。