StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction
- URL: http://arxiv.org/abs/2409.08281v1
- Date: Sun, 25 Aug 2024 00:50:33 GMT
- Title: StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction
- Authors: Shengkun Wang, Taoran Ji, Linhan Wang, Yanshen Sun, Shang-Ching Liu, Amit Kumar, Chang-Tien Lu,
- Abstract summary: We introduce StockTime, a novel LLM-based architecture designed specifically for stock price time series data.
Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data.
By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods.
- Score: 13.52020491768311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stock price prediction task holds a significant role in the financial domain and has been studied for a long time. Recently, large language models (LLMs) have brought new ways to improve these predictions. While recent financial large language models (FinLLMs) have shown considerable progress in financial NLP tasks compared to smaller pre-trained language models (PLMs), challenges persist in stock price forecasting. Firstly, effectively integrating the modalities of time series data and natural language to fully leverage these capabilities remains complex. Secondly, FinLLMs focus more on analysis and interpretability, which can overlook the essential features of time series data. Moreover, due to the abundance of false and redundant information in financial markets, models often produce less accurate predictions when faced with such input data. In this paper, we introduce StockTime, a novel LLM-based architecture designed specifically for stock price data. Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data. It leverages the natural ability of LLMs to predict the next token by treating stock prices as consecutive tokens, extracting textual information such as stock correlations, statistical trends and timestamps directly from these stock prices. StockTime then integrates both textual and time series data into the embedding space. By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods. Our experiments demonstrate that StockTime outperforms recent LLMs, as it gives more accurate predictions while reducing memory usage and runtime costs.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
Time series forecasting in financial aid is difficult due to limited historical datasets and high dimensional financial information.
We use state-of-the-art time series models including pre-trained LLMs (GPT-2 as the backbone), transformers, and linear models to demonstrate their ability to outperform traditional approaches.
arXiv Detail & Related papers (2024-10-24T12:41:47Z) - Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models [9.991327369572819]
We propose a collaborative modeling framework that incorporates textual information about relevant events for predictions.
We leverage the intuition of large language models about future changes to update real number time series predictions.
arXiv Detail & Related papers (2024-07-04T07:21:38Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Leveraging Vision-Language Models for Granular Market Change Prediction [5.54780083433538]
This work proposes modeling and predicting market movements with a fundamentally new approach, namely by utilizing image and byte-based number representation of the stock data processed.
We conduct a large set of experiments on the hourly stock data of the German share index and evaluate various architectures on stock price prediction using historical stock data.
Our evaluation results show that our novel approach based on representation of stock data as text (bytes) and image significantly outperforms strong deep learning-based baselines.
arXiv Detail & Related papers (2023-01-17T19:37:19Z) - Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs [0.304585143845864]
We train two LSTMs with a known length, say $T$ time steps, of previous data and predict only one time step ahead.
While one LSTM is employed to find the best number of epochs, the second LSTM is trained only for the best number of epochs to make predictions.
We treat the current prediction as in the training set for the next prediction and train the same LSTM.
arXiv Detail & Related papers (2022-05-10T05:18:45Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Price graphs: Utilizing the structural information of financial time
series for stock prediction [4.4707451544733905]
We propose a novel framework to address both issues regarding stock prediction.
In terms of transforming time series into complex networks, we convert market price series into graphs.
We take graph embeddings to represent the associations among temporal points as the prediction model inputs.
arXiv Detail & Related papers (2021-06-04T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.