Leveraging Vision-Language Models for Granular Market Change Prediction
- URL: http://arxiv.org/abs/2301.10166v1
- Date: Tue, 17 Jan 2023 19:37:19 GMT
- Title: Leveraging Vision-Language Models for Granular Market Change Prediction
- Authors: Christopher Wimmer, Navid Rekabsaz
- Abstract summary: This work proposes modeling and predicting market movements with a fundamentally new approach, namely by utilizing image and byte-based number representation of the stock data processed.
We conduct a large set of experiments on the hourly stock data of the German share index and evaluate various architectures on stock price prediction using historical stock data.
Our evaluation results show that our novel approach based on representation of stock data as text (bytes) and image significantly outperforms strong deep learning-based baselines.
- Score: 5.54780083433538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting future direction of stock markets using the historical data has
been a fundamental component in financial forecasting. This historical data
contains the information of a stock in each specific time span, such as the
opening, closing, lowest, and highest price. Leveraging this data, the future
direction of the market is commonly predicted using various time-series models
such as Long-Short Term Memory networks. This work proposes modeling and
predicting market movements with a fundamentally new approach, namely by
utilizing image and byte-based number representation of the stock data
processed with the recently introduced Vision-Language models. We conduct a
large set of experiments on the hourly stock data of the German share index and
evaluate various architectures on stock price prediction using historical stock
data. We conduct a comprehensive evaluation of the results with various metrics
to accurately depict the actual performance of various approaches. Our
evaluation results show that our novel approach based on representation of
stock data as text (bytes) and image significantly outperforms strong deep
learning-based baselines.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction [13.52020491768311]
We introduce StockTime, a novel LLM-based architecture designed specifically for stock price time series data.
Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data.
By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods.
arXiv Detail & Related papers (2024-08-25T00:50:33Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading [0.0]
NoxTrader is a sophisticated system designed for portfolio construction and trading execution.
The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data.
Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75.
arXiv Detail & Related papers (2023-10-01T17:53:23Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
We propose a new event forecasting model based on a novel training framework of historical contrastive learning.
CENET learns both the historical and non-historical dependency to distinguish the most potential entities.
We evaluate our proposed model on five benchmark graphs.
arXiv Detail & Related papers (2023-08-29T03:26:38Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - A comparative study of Different Machine Learning Regressors For Stock
Market Prediction [2.1485350418225244]
We intensively studied NASDAQ stock market and targeted to choose the portfolio of ten different companies.
The objective is to compute opening price of next day stock using historical data.
To fulfill this task nine different Machine Learning regressor applied on this data and evaluated using MSE and R2 as performance metric.
arXiv Detail & Related papers (2021-04-14T15:37:33Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
We evaluate several augmentation methods applied to stocks datasets using two state-of-the-art deep learning models.
For a relatively small dataset augmentation methods achieve up to $400%$ improvement in risk adjusted return performance.
For a larger stock dataset augmentation methods achieve up to $40%$ improvement.
arXiv Detail & Related papers (2020-10-28T17:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.