Theoretical guarantees in KL for Diffusion Flow Matching
- URL: http://arxiv.org/abs/2409.08311v1
- Date: Thu, 12 Sep 2024 15:19:00 GMT
- Title: Theoretical guarantees in KL for Diffusion Flow Matching
- Authors: Marta Gentiloni Silveri, Giovanni Conforti, Alain Durmus,
- Abstract summary: Flow Matching (FM) aims to bridge in finite time the target distribution $nustar$ with an auxiliary distribution $mu$.
We obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion.
- Score: 9.618473763561418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flow Matching (FM) (also referred to as stochastic interpolants or rectified flows) stands out as a class of generative models that aims to bridge in finite time the target distribution $\nu^\star$ with an auxiliary distribution $\mu$, leveraging a fixed coupling $\pi$ and a bridge which can either be deterministic or stochastic. These two ingredients define a path measure which can then be approximated by learning the drift of its Markovian projection. The main contribution of this paper is to provide relatively mild assumptions on $\nu^\star$, $\mu$ and $\pi$ to obtain non-asymptotics guarantees for Diffusion Flow Matching (DFM) models using as bridge the conditional distribution associated with the Brownian motion. More precisely, we establish bounds on the Kullback-Leibler divergence between the target distribution and the one generated by such DFM models under moment conditions on the score of $\nu^\star$, $\mu$ and $\pi$, and a standard $L^2$-drift-approximation error assumption.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Score-based generative models are provably robust: an uncertainty quantification perspective [4.396860522241307]
We show that score-based generative models (SGMs) are provably robust to the multiple sources of error in practical implementation.
Our primary tool is the Wasserstein uncertainty propagation (WUP) theorem.
We show how errors due to (a) finite sample approximation, (b) early stopping, (c) score-matching objective choice, (d) score function parametrization, and (e) reference distribution choice, impact the quality of the generative model.
arXiv Detail & Related papers (2024-05-24T17:50:17Z) - Convergence Analysis of Probability Flow ODE for Score-based Generative Models [5.939858158928473]
We study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives.
We prove the total variation between the target and the generated data distributions can be bounded above by $mathcalO(d3/4delta1/2)$ in the continuous time level.
arXiv Detail & Related papers (2024-04-15T12:29:28Z) - Soft-constrained Schrodinger Bridge: a Stochastic Control Approach [4.922305511803267]
Schr"odinger bridge can be viewed as a continuous-time control problem where the goal is to find an optimally controlled diffusion process.
We propose to generalize this problem by allowing the terminal distribution to differ from the target but penalizing the Kullback-Leibler divergence between the two distributions.
One application is the development of robust generative diffusion models.
arXiv Detail & Related papers (2024-03-04T04:10:24Z) - Broadening Target Distributions for Accelerated Diffusion Models via a Novel Analysis Approach [49.97755400231656]
We show that a novel accelerated DDPM sampler achieves accelerated performance for three broad distribution classes not considered before.
Our results show an improved dependency on the data dimension $d$ among accelerated DDPM type samplers.
arXiv Detail & Related papers (2024-02-21T16:11:47Z) - Generative Fractional Diffusion Models [53.36835573822926]
We introduce the first continuous-time score-based generative model that leverages fractional diffusion processes for its underlying dynamics.
Our evaluations on real image datasets demonstrate that GFDM achieves greater pixel-wise diversity and enhanced image quality, as indicated by a lower FID.
arXiv Detail & Related papers (2023-10-26T17:53:24Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.