LightSABRE: A Lightweight and Enhanced SABRE Algorithm
- URL: http://arxiv.org/abs/2409.08368v1
- Date: Thu, 12 Sep 2024 19:19:59 GMT
- Title: LightSABRE: A Lightweight and Enhanced SABRE Algorithm
- Authors: Henry Zou, Matthew Treinish, Kevin Hartman, Alexander Ivrii, Jake Lishman,
- Abstract summary: We introduce LightSABRE, a significant enhancement of the SABRE algorithm that advances both runtime efficiency and circuit quality.
We have achieved a version of the algorithm in Qiskit 1.2.0 that is approximately 200 times faster than the implementation in Qiskit 0.20.1.
- Score: 39.814077130655505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LightSABRE, a significant enhancement of the SABRE algorithm that advances both runtime efficiency and circuit quality. LightSABRE addresses the increasing demands of modern quantum hardware, which can now accommodate complex scenarios, and circuits with millions of gates. Through iterative development within Qiskit, primarily using the Rust programming language, we have achieved a version of the algorithm in Qiskit 1.2.0 that is approximately 200 times faster than the implementation in Qiskit 0.20.1, which already introduced key improvements like the release valve mechanism. Additionally, when compared to the SABRE algorithm presented in Li et al., LightSABRE delivers an average decrease of 18.9\% in SWAP gate count across the same benchmark circuits. Unlike SABRE, which struggles with scalability and convergence on large circuits, LightSABRE delivers consistently high-quality routing solutions, enabling the efficient execution of large quantum circuits on near-term and future quantum devices. LightSABRE's improvements in speed, scalability, and quality position it as a critical tool for optimizing quantum circuits in the context of evolving quantum hardware and error correction techniques.
Related papers
- Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware.
We address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates.
arXiv Detail & Related papers (2024-07-24T14:50:01Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
arXiv Detail & Related papers (2023-09-21T15:48:45Z) - Toward Consistent High-fidelity Quantum Learning on Unstable Devices via
Efficient In-situ Calibration [5.0854551390284]
In the near-term noisy intermediate-scale quantum (NISQ) era, high noise will significantly reduce the fidelity of quantum computing.
In this paper, we propose a novel quantum pulse-based noise adaptation framework, namely QuPAD.
Experiments show that the runtime on quantum devices of QuPAD with 8-10 qubits is less than 15 minutes, which is up to 270x faster than the parameter-shift approach.
arXiv Detail & Related papers (2023-09-12T15:39:06Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
The flexibility in reordering the two-qubit gates allows compiler optimizations to generate circuits with better depths, gate count, and fidelity.
We propose a structured method that ensures linear depth for any compiled QAOA circuit on multi-dimensional quantum architectures.
Overall, we can compile a circuit with up to 1024 qubits in 10 seconds with a 3.8X speedup in depth, 17% reduction in gate count, and 18X improvement for circuit ESP.
arXiv Detail & Related papers (2021-12-12T04:00:45Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.