Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures
- URL: http://arxiv.org/abs/2309.12182v2
- Date: Mon, 2 Oct 2023 11:09:51 GMT
- Title: Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures
- Authors: Pau Escofet, Anabel Ovide, Carmen G. Almudever, Eduard Alarc\'on, and
Sergi Abadal
- Abstract summary: Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
- Score: 1.1288814203214292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modular quantum computing architectures offer a promising alternative to
monolithic designs for overcoming the scaling limitations of current quantum
computers. To achieve scalability beyond small prototypes, quantum
architectures are expected to adopt a modular approach, featuring clusters of
tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical
for improving quantum computing systems' performance and scalability. To
address this challenge, we propose the Hungarian Qubit Assignment (HQA)
algorithm, which leverages the Hungarian algorithm to improve qubit-to-core
assignment. The HQA algorithm considers the interactions between qubits over
the entire circuit, enabling fine-grained partitioning and enhanced qubit
utilization. We compare the HQA algorithm with state-of-the-art alternatives
through comprehensive experiments using both real-world quantum algorithms and
random quantum circuits. The results demonstrate the superiority of our
proposed approach, outperforming existing methods, with an average improvement
of 1.28$\times$.
Related papers
- Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based approach for efficient quantum circuit compilation and mapping.
In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn theses for a specific multi-core architecture.
arXiv Detail & Related papers (2024-06-17T12:09:11Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Revisiting the Mapping of Quantum Circuits: Entering the Multi-Core Era [2.465579331213113]
We introduce the Hungarian Qubit Assignment (HQA) algorithm, a multi-core mapping algorithm designed to optimize qubit assignments to cores with the aim of reducing inter-core communications.
Our evaluation of HQA against state-of-the-art circuit mapping algorithms for modular architectures reveals a $4.9times$ and $1.6times$ improvement in terms of execution time and non-local communications.
arXiv Detail & Related papers (2024-03-25T21:31:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Mapping quantum circuits to modular architectures with QUBO [3.0148208709026005]
In multi-core architectures, it is crucial to minimize the amount of communication between cores when executing an algorithm.
We propose for the first time a Quadratic Unconstrained Binary Optimization technique to encode the problem and the solution.
Our method showed promising results and performed exceptionally well with very dense and highly-parallelized circuits.
arXiv Detail & Related papers (2023-05-11T09:45:47Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Divide and Conquer for Combinatorial Optimization and Distributed
Quantum Computation [3.8221353389253676]
We introduce the Quantum Divide and Conquer Algorithm (QDCA), a hybrid variational approach to mapping large optimization problems onto distributed quantum architectures.
This is achieved through the combined use of graph partitioning and quantum circuit cutting.
We simulate the QDCA on instances of the Maximum Independent Set problem and find that it is able to outperform similar classical algorithms.
arXiv Detail & Related papers (2021-07-15T18:00:32Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.