論文の概要: Knowledge Tagging with Large Language Model based Multi-Agent System
- arxiv url: http://arxiv.org/abs/2409.08406v1
- Date: Thu, 12 Sep 2024 21:39:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:17:43.032603
- Title: Knowledge Tagging with Large Language Model based Multi-Agent System
- Title(参考訳): 大規模言語モデルに基づくマルチエージェントシステムによる知識タグ付け
- Authors: Hang Li, Tianlong Xu, Ethan Chang, Qingsong Wen,
- Abstract要約: 本稿では,従来のアルゴリズムの限界に対処するマルチエージェントシステムについて検討する。
我々は,従来の手法が抱えていた課題を克服する上で,LLMベースのマルチエージェントシステムの可能性を強調した。
- 参考スコア(独自算出の注目度): 17.53518487546791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge tagging for questions is vital in modern intelligent educational applications, including learning progress diagnosis, practice question recommendations, and course content organization. Traditionally, these annotations have been performed by pedagogical experts, as the task demands not only a deep semantic understanding of question stems and knowledge definitions but also a strong ability to link problem-solving logic with relevant knowledge concepts. With the advent of advanced natural language processing (NLP) algorithms, such as pre-trained language models and large language models (LLMs), pioneering studies have explored automating the knowledge tagging process using various machine learning models. In this paper, we investigate the use of a multi-agent system to address the limitations of previous algorithms, particularly in handling complex cases involving intricate knowledge definitions and strict numerical constraints. By demonstrating its superior performance on the publicly available math question knowledge tagging dataset, MathKnowCT, we highlight the significant potential of an LLM-based multi-agent system in overcoming the challenges that previous methods have encountered. Finally, through an in-depth discussion of the implications of automating knowledge tagging, we underscore the promising results of deploying LLM-based algorithms in educational contexts.
- Abstract(参考訳): 質問に対する知識タグ付けは、学習進行診断、実践的質問推薦、コースコンテンツ組織など、現代のインテリジェントな教育アプリケーションにおいて不可欠である。
伝統的に、これらのアノテーションは教育の専門家によって実行されてきた。タスクは質問の根幹と知識定義の深い意味的理解を要求するだけでなく、問題解決論理と関連する知識概念を結びつける強力な能力も要求する。
事前訓練された言語モデルや大規模言語モデル(LLM)などの高度な自然言語処理(NLP)アルゴリズムの出現に伴い、様々な機械学習モデルを用いた知識タグ付けプロセスの自動化が研究されている。
本稿では,従来のアルゴリズムの制約,特に複雑な知識定義や厳密な数値制約を含む複雑なケースに対処するためのマルチエージェントシステムについて検討する。
公開されている数学質問知識タグ付けデータセットであるMathKnowCTにおいて、その優れた性能を示すことで、従来の手法が直面した課題を克服する上で、LLMベースのマルチエージェントシステムの可能性を強調した。
最後に,知識タグ付けの自動化に関する深い議論を通じて,LLMベースのアルゴリズムを教育的文脈に展開する有望な結果について述べる。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Automate Knowledge Concept Tagging on Math Questions with LLMs [48.5585921817745]
知識概念のタグ付けは、現代の知的教育応用において重要な役割を担っている。
伝統的に、これらの注釈は教育専門家の助けを借りて手作業で行われてきた。
本稿では,Large Language Models (LLM) を用いたタグ付けタスクの自動化について検討する。
論文 参考訳(メタデータ) (2024-03-26T00:09:38Z) - Quantitative knowledge retrieval from large language models [4.155711233354597]
大規模言語モデル(LLM)は、説得力のある自然言語配列を生成する能力について広く研究されている。
本稿では,データ解析作業を支援するための定量的知識検索のメカニズムとして,LLMの実現可能性について検討する。
論文 参考訳(メタデータ) (2024-02-12T16:32:37Z) - LB-KBQA: Large-language-model and BERT based Knowledge-Based Question
and Answering System [7.626368876843794]
本稿では,Large Language Model(LLM)とBERT(LB-KBQA)に基づく新しいKBQAシステムを提案する。
生成AIの助けを借りて,提案手法は新たに出現した意図を検知し,新たな知識を得ることができた。
ファイナンシャルドメイン質問応答の実験では,本モデルの方が優れた効果を示した。
論文 参考訳(メタデータ) (2024-02-05T16:47:17Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
我々は,Large Language Model (LLM) を用いて,質問応答対を原料から抽出し,微調整する。
得られたMechGPT LLM基盤モデルは、知識検索、様々な言語タスク、仮説生成、異なる領域にわたる知識の接続能力を調べるために、一連の計算実験で使用される。
論文 参考訳(メタデータ) (2023-10-16T14:29:35Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。