論文の概要: CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
- arxiv url: http://arxiv.org/abs/2409.08510v1
- Date: Fri, 13 Sep 2024 03:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:58:09.206278
- Title: CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters
- Title(参考訳): CasDyF-Net:カスケード動的フィルタによる画像デハージング
- Authors: Wang Yinglong, He Bin,
- Abstract要約: イメージデハジングは、大気の散乱と吸収効果を低減し、画像の明瞭さと視覚的品質を回復することを目的としている。
動的フィルタリングに着想を得て,マルチブランチネットワークを構築するためにカスケード動的フィルタを提案する。
RESIDE、Haze4K、O-Hazeのデータセットの実験は、我々の方法の有効性を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image dehazing aims to restore image clarity and visual quality by reducing atmospheric scattering and absorption effects. While deep learning has made significant strides in this area, more and more methods are constrained by network depth. Consequently, lots of approaches have adopted parallel branching strategies. however, they often prioritize aspects such as resolution, receptive field, or frequency domain segmentation without dynamically partitioning branches based on the distribution of input features. Inspired by dynamic filtering, we propose using cascaded dynamic filters to create a multi-branch network by dynamically generating filter kernels based on feature map distribution. To better handle branch features, we propose a residual multiscale block (RMB), combining different receptive fields. Furthermore, we also introduce a dynamic convolution-based local fusion method to merge features from adjacent branches. Experiments on RESIDE, Haze4K, and O-Haze datasets validate our method's effectiveness, with our model achieving a PSNR of 43.21dB on the RESIDE-Indoor dataset. The code is available at https://github.com/dauing/CasDyF-Net.
- Abstract(参考訳): イメージデハジングは、大気の散乱と吸収効果を低減し、画像の明瞭さと視覚的品質を回復することを目的としている。
ディープラーニングはこの分野で大きな進歩を遂げているが、ますます多くの手法がネットワークの深さによって制約されている。
その結果、多くのアプローチが並列分岐戦略を採用した。
しかし、それらはしばしば、入力特徴の分布に基づいてブランチを動的に分割することなく、解像度、受容野、周波数領域セグメンテーションなどの側面を優先順位付けする。
動的フィルタに着想を得て,特徴写像分布に基づくフィルタカーネルを動的に生成し,マルチブランチネットワークを構築するために,カスケード動的フィルタを提案する。
分岐特性をよりよく扱うために、異なる受容場を組み合わせた残差マルチスケールブロック(RMB)を提案する。
さらに,隣り合う枝から特徴をマージするために,動的畳み込みに基づく局所融合法を導入する。
RESIDE, Haze4K, O-Hazeデータセットを用いた実験により, RESIDE-Indoorデータセット上でのPSNR43.21dBを達成した。
コードはhttps://github.com/dauing/CasDyF-Netで公開されている。
関連論文リスト
- Decomposed Guided Dynamic Filters for Efficient RGB-Guided Depth
Completion [46.04264366475848]
RGB誘導深度補正は、スパース深度測定と対応するRGB画像から深度マップを予測することを目的としている。
ガイド付き動的フィルタは、RGB特徴から空間的に可変な深度分割可能な畳み込みフィルタを生成し、深度特徴を導出する。
本稿では,ガイド付き動的フィルタを空間的に共有されたコンポーネントに分解し,各空間位置におけるコンテンツ適応型適応器を乗じて分解する。
論文 参考訳(メタデータ) (2023-09-05T08:37:58Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
画像融合のための新しい相互誘導動的ネットワーク(MGDN)を提案する。
5つのベンチマークデータセットによる実験結果から,提案手法は4つの画像融合タスクにおいて既存手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-24T03:50:37Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
本稿では,全インスタンスの多様体情報をプルーンドネットワークの空間に埋め込むことにより,冗長フィルタを動的に除去する新しいパラダイムを提案する。
提案手法の有効性をいくつかのベンチマークで検証し,精度と計算コストの両面で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-10T03:59:03Z) - Delving Deeper into Anti-aliasing in ConvNets [42.82751522973616]
エイリアシング(Aliasing)は、高周波信号がサンプリング後に完全に異なる信号に縮退する現象である。
空間的位置とチャネル群ごとに異なるフィルタ重みを予測できる適応型コンテンツ対応低域フィルタ層を提案する。
論文 参考訳(メタデータ) (2020-08-21T17:56:04Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、より柔軟で効率的なマルチスケールのクロスモーダルな特徴処理を実装している。
論文 参考訳(メタデータ) (2020-07-13T07:59:55Z) - Dependency Aware Filter Pruning [74.69495455411987]
重要でないフィルタを割ることは、推論コストを軽減するための効率的な方法である。
以前の作業は、その重み基準やそれに対応するバッチノームスケーリング要因に従ってフィルタをプルークする。
所望の空間性を達成するために,空間性誘導正規化を動的に制御する機構を提案する。
論文 参考訳(メタデータ) (2020-05-06T07:41:22Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。