論文の概要: Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection
- arxiv url: http://arxiv.org/abs/2007.06227v3
- Date: Thu, 16 Jul 2020 09:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 00:08:01.575062
- Title: Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection
- Title(参考訳): RGB次元高次物体検出のための階層動的フィルタリングネットワーク
- Authors: Youwei Pang, Lihe Zhang, Xiaoqi Zhao, Huchuan Lu
- Abstract要約: RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、より柔軟で効率的なマルチスケールのクロスモーダルな特徴処理を実装している。
- 参考スコア(独自算出の注目度): 91.43066633305662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main purpose of RGB-D salient object detection (SOD) is how to better
integrate and utilize cross-modal fusion information. In this paper, we explore
these issues from a new perspective. We integrate the features of different
modalities through densely connected structures and use their mixed features to
generate dynamic filters with receptive fields of different sizes. In the end,
we implement a kind of more flexible and efficient multi-scale cross-modal
feature processing, i.e. dynamic dilated pyramid module. In order to make the
predictions have sharper edges and consistent saliency regions, we design a
hybrid enhanced loss function to further optimize the results. This loss
function is also validated to be effective in the single-modal RGB SOD task. In
terms of six metrics, the proposed method outperforms the existing twelve
methods on eight challenging benchmark datasets. A large number of experiments
verify the effectiveness of the proposed module and loss function. Our code,
model and results are available at \url{https://github.com/lartpang/HDFNet}.
- Abstract(参考訳): RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、密結合構造を通して異なるモジュラリティの特徴を統合し、それらの混合特徴を用いて異なるサイズの受容場を持つ動的フィルタを生成する。
最後に、動的拡張ピラミッドモジュールという、より柔軟で効率的なマルチスケールのクロスモーダル特徴処理を実装した。
予測がより鋭いエッジと一貫したサリエンシー領域を持つようにするため、結果をさらに最適化するハイブリッド拡張損失関数を設計した。
この損失関数は、単一モードのRGB SODタスクでも有効であることを示す。
6つの指標に関して,提案手法は8つの挑戦的ベンチマークデータセット上で既存の12の手法より優れている。
提案するモジュールと損失関数の有効性を検証する実験が多数行われた。
私たちのコード、モデル、結果は \url{https://github.com/lartpang/hdfnet} で利用可能です。
関連論文リスト
- CasDyF-Net: Image Dehazing via Cascaded Dynamic Filters [0.0]
イメージデハジングは、大気の散乱と吸収効果を低減し、画像の明瞭さと視覚的品質を回復することを目的としている。
動的フィルタリングに着想を得て,マルチブランチネットワークを構築するためにカスケード動的フィルタを提案する。
RESIDE、Haze4K、O-Hazeのデータセットの実験は、我々の方法の有効性を検証する。
論文 参考訳(メタデータ) (2024-09-13T03:20:38Z) - Decomposed Guided Dynamic Filters for Efficient RGB-Guided Depth
Completion [46.04264366475848]
RGB誘導深度補正は、スパース深度測定と対応するRGB画像から深度マップを予測することを目的としている。
ガイド付き動的フィルタは、RGB特徴から空間的に可変な深度分割可能な畳み込みフィルタを生成し、深度特徴を導出する。
本稿では,ガイド付き動的フィルタを空間的に共有されたコンポーネントに分解し,各空間位置におけるコンテンツ適応型適応器を乗じて分解する。
論文 参考訳(メタデータ) (2023-09-05T08:37:58Z) - Interactive Context-Aware Network for RGB-T Salient Object Detection [7.544240329265388]
ICANet(Interactive Context-Aware Network)と呼ばれる新しいネットワークを提案する。
ICANetには、クロスモーダルとクロススケールの融合を効果的に実行する3つのモジュールが含まれている。
実験により,我々のネットワークは最先端のRGB-T SOD法に対して良好に動作していることが示された。
論文 参考訳(メタデータ) (2022-11-11T10:04:36Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
本稿では,各インスタンスの異なるスケールからfpn特徴の画素レベルの組み合わせを条件付きで選択する,きめ細かい動的ヘッドを提案する。
実験は,いくつかの最先端検出ベンチマークにおける提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-12-07T08:16:32Z) - Siamese Network for RGB-D Salient Object Detection and Beyond [113.30063105890041]
共有ネットワークバックボーンを通じてRGBと深度入力の両方から学習するための新しいフレームワークが提案されている。
5つの一般的な指標を用いた総合的な実験は、設計されたフレームワークが堅牢なRGB-D塩分濃度検出器をもたらすことを示している。
また、JL-DCFをRGB-Dセマンティックセマンティックセマンティクスフィールドにリンクし、いくつかのセマンティクスセマンティクスモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-08-26T06:01:05Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - RGB-D Salient Object Detection with Cross-Modality Modulation and
Selection [126.4462739820643]
本稿では, RGB-D Salient Object Detection (SOD) において, モジュール間相補性を段階的に統合し, 改良する有効な方法を提案する。
提案するネットワークは,1)RGB画像とそれに対応する深度マップからの補完情報を効果的に統合する方法,および2)より精度の高い特徴を適応的に選択する方法の2つの課題を主に解決する。
論文 参考訳(メタデータ) (2020-07-14T14:22:50Z) - Multi-level Cross-modal Interaction Network for RGB-D Salient Object
Detection [3.581367375462018]
我々は,RGB-D を用いたサルエントオブジェクト検出(SOD)のためのMCINet(Multi-level Cross-modal Interaction Network)を提案する。
MCI-Netには2つの重要なコンポーネントがある: 1)RGB画像と深度キューの高レベルな特徴を学習するために使用されるクロスモーダルな特徴学習ネットワーク、2)SOD性能を高めるためにマルチレベルなクロスモーダル機能を統合するマルチレベルな対話型統合ネットワーク。
論文 参考訳(メタデータ) (2020-07-10T02:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。