ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model
- URL: http://arxiv.org/abs/2409.08543v1
- Date: Fri, 13 Sep 2024 05:33:09 GMT
- Title: ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model
- Authors: Zezheng Qin,
- Abstract summary: This study examines the integration of multimodal data text and audio into large language models (LLMs)
Traditional text and audio recommenders encounter limitations such as the cold-start problem.
Low-Rank Adaptation (LoRA) is introduced, which enhances efficiency without compromising performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender Systems (RS) play a pivotal role in boosting user satisfaction by providing personalized product suggestions in domains such as e-commerce and entertainment. This study examines the integration of multimodal data text and audio into large language models (LLMs) with the aim of enhancing recommendation performance. Traditional text and audio recommenders encounter limitations such as the cold-start problem, and recent advancements in LLMs, while promising, are computationally expensive. To address these issues, Low-Rank Adaptation (LoRA) is introduced, which enhances efficiency without compromising performance. The ATFLRec framework is proposed to integrate audio and text modalities into a multimodal recommendation system, utilizing various LoRA configurations and modality fusion techniques. Results indicate that ATFLRec outperforms baseline models, including traditional and graph neural network-based approaches, achieving higher AUC scores. Furthermore, separate fine-tuning of audio and text data with distinct LoRA modules yields optimal performance, with different pooling methods and Mel filter bank numbers significantly impacting performance. This research offers valuable insights into optimizing multimodal recommender systems and advancing the integration of diverse data modalities in LLMs.
Related papers
- STAR: A Simple Training-free Approach for Recommendations using Large Language Models [36.18841135511487]
Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks.
We propose a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning.
Our method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors.
arXiv Detail & Related papers (2024-10-21T19:34:40Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
arXiv Detail & Related papers (2024-09-24T01:40:24Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
We propose a parameter-efficient Large Language Model Bi-Tuning framework for sequential recommendation with collaborative information (Laser)
In our Laser, the prefix is utilized to incorporate user-item collaborative information and adapt the LLM to the recommendation task, while the suffix converts the output embeddings of the LLM from the language space to the recommendation space for the follow-up item recommendation.
M-Former is a lightweight MoE-based querying transformer that uses a set of query experts to integrate diverse user-specific collaborative information encoded by frozen ID-based sequential recommender systems.
arXiv Detail & Related papers (2024-09-03T04:55:03Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation [21.281471662696372]
We propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model.
To capture the dynamic user preference, we design a two-stage user preference summarization method.
We then employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences.
arXiv Detail & Related papers (2024-08-19T04:44:32Z) - MMREC: LLM Based Multi-Modal Recommender System [2.3113916776957635]
This paper presents a novel approach to enhancing recommender systems by leveraging Large Language Models (LLMs) and deep learning techniques.
The proposed framework aims to improve the accuracy and relevance of recommendations by incorporating multi-modal information processing and by the use of unified latent space representation.
arXiv Detail & Related papers (2024-08-08T04:31:29Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.