論文の概要: Using Convolutional Neural Networks for Denoising and Deblending of Marine Seismic Data
- arxiv url: http://arxiv.org/abs/2409.08603v1
- Date: Fri, 13 Sep 2024 07:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:18:35.860257
- Title: Using Convolutional Neural Networks for Denoising and Deblending of Marine Seismic Data
- Title(参考訳): 畳み込み型ニューラルネットワークによる海洋地震探査
- Authors: Sigmund Slang, Jing Sun, Thomas Elboth, Steven McDonald, Leiv-J. Gelius,
- Abstract要約: 我々は、深部畳み込みニューラルネットワーク(CNN)を用いて、地震干渉ノイズを除去し、地震データを損なう。
CNNを用いた共通チャネル領域の検証は比較的良好であり,ショット領域と比較して改善されている。
- 参考スコア(独自算出の注目度): 1.6411821807321063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing marine seismic data is computationally demanding and consists of multiple time-consuming steps. Neural network based processing can, in theory, significantly reduce processing time and has the potential to change the way seismic processing is done. In this paper we are using deep convolutional neural networks (CNNs) to remove seismic interference noise and to deblend seismic data. To train such networks, a significant amount of computational memory is needed since a single shot gather consists of more than 106 data samples. Preliminary results are promising both for denoising and deblending. However, we also observed that the results are affected by the signal-to-noise ratio (SnR). Moving to common channel domain is a way of breaking the coherency of the noise while also reducing the input volume size. This makes it easier for the network to distinguish between signal and noise. It also increases the efficiency of the GPU memory usage by enabling better utilization of multi core processing. Deblending in common channel domain with the use of a CNN yields relatively good results and is an improvement compared to shot domain.
- Abstract(参考訳): 海洋地震データの処理は計算的に要求され、複数の時間を要するステップから構成される。
ニューラルネットワークに基づく処理は、理論的には、処理時間を著しく削減し、地震処理の方法を変える可能性がある。
本稿では、深部畳み込みニューラルネットワーク(CNN)を用いて、地震干渉ノイズを除去し、地震データを損なう。
このようなネットワークをトレーニングするには、単一のショット収集が106以上のデータサンプルで構成されているため、かなりの量の計算メモリが必要である。
予備的な結果は、デノベーションとデノベーションの両方を約束する。
しかし,信号対雑音比 (SnR) の影響もみられた。
共通チャネル領域への移行は、ノイズのコヒーレンシーを破り、入力ボリュームを小さくする手段である。
これにより、ネットワークは信号とノイズを区別しやすくなる。
また、マルチコア処理のより良い利用を可能にすることにより、GPUメモリの使用効率も向上する。
CNNを用いた共通チャネル領域の検証は比較的良好であり,ショット領域と比較して改善されている。
関連論文リスト
- A convolutional neural network approach to deblending seismic data [1.5488464287814563]
本稿では,高速かつ効率的な地震探査のためのデータ駆動深層学習手法を提案する。
地震データの特徴に応じて畳み込みニューラルネットワーク(CNN)を設計する。
ネットワークのトレーニングと検証を行った後、ほぼリアルタイムで地震波のたわみを行うことができる。
論文 参考訳(メタデータ) (2024-09-12T10:54:35Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Dense-Sparse Deep Convolutional Neural Networks Training for Image Denoising [0.6215404942415159]
畳み込みニューラルネットワークのような深層学習手法は、画像認知の領域で注目されている。
ディープラーニング畳み込み畳み込みニューラルネットワークは、バッチ正規化と残留学習の正規化メソッドを追加して、多くのフィードフォワード畳み込み層を使用して、トレーニングを高速化し、denoisingパフォーマンスを大幅に改善する。
本稿では,高密度スパース・デンス・ネットワークのトレーニング手法を深層化畳み込みニューラルネットワークに適用することにより,学習可能なパラメータを著しく削減できることを示す。
論文 参考訳(メタデータ) (2021-07-10T15:14:19Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Robust and fast post-processing of single-shot spin qubit detection
events with a neural network [0.0]
我々は、単発スピン検出イベントの集合を分類するためにニューラルネットワークを訓練する。
その結果,Rabi-oscillationの可視性は7%向上した。
論文 参考訳(メタデータ) (2020-12-08T19:13:09Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。