論文の概要: Towards certifiable AI in aviation: landscape, challenges, and opportunities
- arxiv url: http://arxiv.org/abs/2409.08666v1
- Date: Fri, 13 Sep 2024 09:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:08:51.607478
- Title: Towards certifiable AI in aviation: landscape, challenges, and opportunities
- Title(参考訳): 航空における認証AIを目指して--ランドスケープ、チャレンジ、チャンス
- Authors: Hymalai Bello, Daniel Geißler, Lala Ray, Stefan Müller-Divéky, Peter Müller, Shannon Kittrell, Mengxi Liu, Bo Zhou, Paul Lukowicz,
- Abstract要約: 本稿では,アビオニクスにおける形式的AI認証の総合的なマインドマップを提案する。
パフォーマンス指標を超えた資格の必要性を強調する例として、AI開発を認定する上での課題を強調している。
- 参考スコア(独自算出の注目度): 4.6986079126463505
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) methods are powerful tools for various domains, including critical fields such as avionics, where certification is required to achieve and maintain an acceptable level of safety. General solutions for safety-critical systems must address three main questions: Is it suitable? What drives the system's decisions? Is it robust to errors/attacks? This is more complex in AI than in traditional methods. In this context, this paper presents a comprehensive mind map of formal AI certification in avionics. It highlights the challenges of certifying AI development with an example to emphasize the need for qualification beyond performance metrics.
- Abstract(参考訳): 人工知能(AI)メソッドは、アビオニクスなどの重要な分野を含む、さまざまな分野の強力なツールである。
安全クリティカルシステムに対する一般的な解決策は、3つの主要な問題に対処する必要がある。
システムの決定を駆動する要因は何か?
エラーや攻撃に対して堅牢か?
これは従来の方法よりもAIにおいて複雑です。
本稿では,アビオニクスにおける形式的AI認証の総合的なマインドマップを提案する。
パフォーマンス指標を超えた資格の必要性を強調する例として、AI開発を認定する上での課題を強調している。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - The Contribution of XAI for the Safe Development and Certification of AI: An Expert-Based Analysis [4.119574613934122]
機械学習モデルのブラックボックスの性質は、複雑な技術システムの認証に対する従来のアプローチの使用を制限する。
潜在的な解決策として、このブラックボックスに関する洞察を与える方法が考えられる。
XAIメソッドは安全なAI開発に役立つが、認証は技術システムに関する包括的で正確な情報に依存しているため、その影響は限定されると予想されている。
論文 参考訳(メタデータ) (2024-07-22T16:08:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review [12.38351931894004]
本稿では,安全かつ信頼性の高い自動運転のための説明可能な手法に関する,最初の体系的な文献レビューを紹介する。
我々は、ADにおける安全で信頼性の高いAIに対するXAIの5つの重要な貢献を特定し、それらは解釈可能な設計、解釈可能な代理モデル、解釈可能なモニタリング、補助的な説明、解釈可能な検証である。
我々は、これらのコントリビューションを統合するためにSafeXと呼ばれるモジュラーフレームワークを提案し、同時にAIモデルの安全性を確保しながら、ユーザへの説明提供を可能にした。
論文 参考訳(メタデータ) (2024-02-08T09:08:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - On Safety Assessment of Artificial Intelligence [0.0]
人工知能の多くのモデル、特に機械学習は統計モデルであることを示す。
危険なランダム障害の予算の一部は、AIシステムの確率論的欠陥行動に使用される必要がある。
我々は、安全関連システムにおけるAIの利用に決定的な研究課題を提案する。
論文 参考訳(メタデータ) (2020-02-29T14:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。