論文の概要: GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction
- arxiv url: http://arxiv.org/abs/2409.08688v1
- Date: Fri, 13 Sep 2024 10:15:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:58:47.438141
- Title: GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction
- Title(参考訳): GenMapping:ロバストオンラインHDマップ構築のための逆パースペクティブマッピングの可能性
- Authors: Siyu Li, Kailun Yang, Hao Shi, Song Wang, You Yao, Zhiyong Li,
- Abstract要約: 我々はGenMappingというユニバーサルマップ生成フレームワークを設計した。
このフレームワークは、主および二重補助枝を含む三進的なシナジーアーキテクチャで構築されている。
実験結果の網羅的な配列から,提案手法はセマンティックマッピングとベクトル化マッピングの両方において最先端の手法を超越し,高速な推論速度を維持した。
- 参考スコア(独自算出の注目度): 20.1127163541618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online High-Definition (HD) maps have emerged as the preferred option for autonomous driving, overshadowing the counterpart offline HD maps due to flexible update capability and lower maintenance costs. However, contemporary online HD map models embed parameters of visual sensors into training, resulting in a significant decrease in generalization performance when applied to visual sensors with different parameters. Inspired by the inherent potential of Inverse Perspective Mapping (IPM), where camera parameters are decoupled from the training process, we have designed a universal map generation framework, GenMapping. The framework is established with a triadic synergy architecture, including principal and dual auxiliary branches. When faced with a coarse road image with local distortion translated via IPM, the principal branch learns robust global features under the state space models. The two auxiliary branches are a dense perspective branch and a sparse prior branch. The former exploits the correlation information between static and moving objects, whereas the latter introduces the prior knowledge of OpenStreetMap (OSM). The triple-enhanced merging module is crafted to synergistically integrate the unique spatial features from all three branches. To further improve generalization capabilities, a Cross-View Map Learning (CVML) scheme is leveraged to realize joint learning within the common space. Additionally, a Bidirectional Data Augmentation (BiDA) module is introduced to mitigate reliance on datasets concurrently. A thorough array of experimental results shows that the proposed model surpasses current state-of-the-art methods in both semantic mapping and vectorized mapping, while also maintaining a rapid inference speed. The source code will be publicly available at https://github.com/lynn-yu/GenMapping.
- Abstract(参考訳): オンラインハイディフィニション(HD)マップは、フレキシブルなアップデート機能とメンテナンスコストの低減により、対向するオフラインHDマップを覆い隠して、自動運転の選択肢として好まれている。
しかし、現代のオンラインHDマップモデルでは、視覚センサのパラメータをトレーニングに組み込むことで、異なるパラメータを持つ視覚センサに適用した場合の一般化性能が大幅に低下する。
カメラパラメータをトレーニングプロセスから切り離した逆パースペクティブマッピング(IPM)の本質的なポテンシャルに着想を得て,汎用地図生成フレームワークGenMappingを設計した。
このフレームワークは、主および二重補助枝を含む三進的なシナジーアーキテクチャで構築されている。
IPMを通した局所歪みのある粗い道路画像に直面すると、主枝は状態空間モデルの下でロバストなグローバルな特徴を学習する。
2つの補助枝は、密度の高いパースペクティブブランチとスパース前のブランチである。
前者は静的オブジェクトと移動オブジェクトの相関情報を利用するが、後者はOpenStreetMap (OSM) の以前の知識を導入する。
トリプルエンハンスド・マージングモジュールは、3つの枝のそれぞれから固有の空間的特徴を相乗的に統合するために設計されている。
一般化能力を更に向上させるために,共通空間における共同学習を実現するために,CVML(Cross-View Map Learning)スキームを活用する。
さらに、データセットへの依存を同時に緩和するために、Bidirectional Data Augmentation (BiDA)モジュールが導入されている。
実験結果の網羅的な配列から,提案手法はセマンティックマッピングとベクトル化マッピングの両方において最先端の手法を超越し,高速な推論速度を維持した。
ソースコードはhttps://github.com/lynn-yu/GenMapping.comで公開されている。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が,有望なソリューションとして浮上している。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
我々は,オンラインベクトル化地図知覚を高めるために,低コストな履歴ラスタライズドマップを利用するHRMapNetを提案する。
履歴化された地図は、過去の予測されたベクトル化された結果から容易に構築でき、貴重な補完情報を提供する。
HRMapNetは、ほとんどのオンラインベクトル化マップ認識手法と統合することができる。
論文 参考訳(メタデータ) (2024-09-01T05:22:33Z) - DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction [20.6143278960295]
本稿では,時間的インスタンス整合性と時間的マップ整合性学習に焦点を当てた。
DTCLMapperは、インスタンスの埋め込みとジオメトリマップを組み合わせた、双方向ストリームの時間一貫性学習モジュールである。
良く認識されたベンチマーク実験から,提案したDTCLMapperはベクトル化されたマッピングタスクにおいて最先端のパフォーマンスを達成することが示唆された。
論文 参考訳(メタデータ) (2024-05-09T02:58:55Z) - ADMap: Anti-disturbance framework for reconstructing online vectorized
HD map [9.218463154577616]
本稿では, 反ゆらぎマップ再構築フレームワーク (ADMap) を提案する。
点次ジッタを緩和するため、このフレームワークは、マルチスケール知覚ネック、インスタンスインタラクティブアテンション(IIA)、ベクトル方向差損失(VDDL)の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2024-01-24T01:37:27Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
本稿では,"プレーン"特性を維持できる改良型DETR検出器を提案する。
特定の局所性制約を伴わずに、単一スケールの機能マップとグローバルなクロスアテンション計算を使用する。
マルチスケールな特徴マップと局所性制約の欠如を補うために,2つの単純な技術が平易な設計において驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2023-08-03T17:59:04Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
より優れた感度を有し,現実の自律運転シナリオに適した,新化に基づく評価指標を提案する。
また、精度の高い出力に微分可能化を適用し、HDマップの幾何学的監視を行う新しいフレームワークであるMapVR(Map Vectorization via Rasterization)を提案する。
論文 参考訳(メタデータ) (2023-06-18T08:51:14Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
高精細(HD)セマンティックマップは、自動運転車が都市環境をナビゲートするために不可欠である。
オフラインのHDマップを作成する従来の方法には、労働集約的な手動アノテーションプロセスが含まれる。
近年,オンラインセンサを用いた局所地図作成手法が提案されている。
本研究では,グローバルマップのニューラル表現であるニューラルマッププライオリティ(NMP)を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:58:40Z) - ASH: A Modern Framework for Parallel Spatial Hashing in 3D Perception [91.24236600199542]
ASHは、GPU上の並列空間ハッシュのためのモダンで高性能なフレームワークである。
ASHはより高いパフォーマンスを実現し、よりリッチな機能をサポートし、より少ないコード行を必要とする。
ASHとそのサンプルアプリケーションはOpen3Dでオープンソース化されている。
論文 参考訳(メタデータ) (2021-10-01T16:25:40Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。