SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
- URL: http://arxiv.org/abs/2409.08766v1
- Date: Fri, 13 Sep 2024 12:20:02 GMT
- Title: SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
- Authors: Dingyi Zhuang, Yuheng Bu, Guang Wang, Shenhao Wang, Jinhua Zhao,
- Abstract summary: Existing deep learning mostly focuses on prediction, overlooking the inherent uncertainty in such prediction.
This paper introduces a novel post-hoc Sparsity-atemporalwar AUC framework, which calibrates uncertainty in both zero and non-zero values.
Specifically, our empirical experiments show a 20% reduction in the sparse traffic accident and urban crime prediction errors.
- Score: 17.994971799054213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying uncertainty is crucial for robust and reliable predictions. However, existing spatiotemporal deep learning mostly focuses on deterministic prediction, overlooking the inherent uncertainty in such prediction. Particularly, highly-granular spatiotemporal datasets are often sparse, posing extra challenges in prediction and uncertainty quantification. To address these issues, this paper introduces a novel post-hoc Sparsity-awar Uncertainty Calibration (SAUC) framework, which calibrates uncertainty in both zero and non-zero values. To develop SAUC, we firstly modify the state-of-the-art deterministic spatiotemporal Graph Neural Networks (ST-GNNs) to probabilistic ones in the pre-calibration phase. Then we calibrate the probabilistic ST-GNNs for zero and non-zero values using quantile approaches.Through extensive experiments, we demonstrate that SAUC can effectively fit the variance of sparse data and generalize across two real-world spatiotemporal datasets at various granularities. Specifically, our empirical experiments show a 20\% reduction in calibration errors in zero entries on the sparse traffic accident and urban crime prediction. Overall, this work demonstrates the theoretical and empirical values of the SAUC framework, thus bridging a significant gap between uncertainty quantification and spatiotemporal prediction.
Related papers
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
We provide training examples for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations.
We further extend our analysis to the case where the test point has non-trivial correlations with the training set, setting often encountered in time series forecasting.
We validate our theory across a variety of high dimensional data.
arXiv Detail & Related papers (2024-08-08T17:27:29Z) - Uncertainty-Aware Crime Prediction With Spatial Temporal Multivariate Graph Neural Networks [12.027484258239824]
Crime incidents are sparse, particularly in small regions and within specific time periods.
Traditional spatial-temporal deep learning models often struggle with this sparsity.
We introduce a novel approach termed Spatial Temporal Multivariate Zero-Inflated Negative Binomial Graph Neural Networks (STMGNN-ZINB)
arXiv Detail & Related papers (2024-08-08T03:25:41Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Ensemble Neural Networks for Remaining Useful Life (RUL) Prediction [0.39287497907611874]
A core part of maintenance planning is a monitoring system that provides a good prognosis on health and degradation.
Here, we propose ensemble neural networks for probabilistic RUL predictions which considers both uncertainties and decouples these two uncertainties.
This method is tested on NASA's turbofan jet engine CMAPSS data-set.
arXiv Detail & Related papers (2023-09-21T19:38:44Z) - Graph Neural Network Interatomic Potential Ensembles with Calibrated
Aleatoric and Epistemic Uncertainty on Energy and Forces [9.378581265532006]
We present a complete framework for training and recalibrating graph neural network ensemble models to produce accurate predictions of energy and forces.
The proposed method considers both epistemic and aleatoric uncertainty and the total uncertainties are recalibrated post hoc.
A detailed analysis of the predictive performance and uncertainty calibration is provided.
arXiv Detail & Related papers (2023-05-10T13:03:06Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.