論文の概要: Kinect Calibration and Data Optimization For Anthropometric Parameters
- arxiv url: http://arxiv.org/abs/2409.08847v1
- Date: Fri, 13 Sep 2024 14:05:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:19:29.637836
- Title: Kinect Calibration and Data Optimization For Anthropometric Parameters
- Title(参考訳): Kinectキャリブレーションと人体計測パラメータの最適化
- Authors: M. S. Gokmen, M. Akbaba, O. Findik,
- Abstract要約: Microsoft kinectセンサーは、シーンの奥行き画像と人間の関節の3d座標を得ることができる。
キネクトセンサーから取得した人体計測特性と3次元共同座標の生データは不安定である。
本研究では,キネクトセンサを校正し,骨格特性を最適化する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, through development of several 3d vision systems, widely used in various applications, medical and biometric fields. Microsoft kinect sensor have been most of used camera among 3d vision systems. Microsoft kinect sensor can obtain depth images of a scene and 3d coordinates of human joints. Thus, anthropometric features can extractable easily. Anthropometric feature and 3d joint coordinate raw datas which captured from kinect sensor is unstable. The strongest reason for this, datas vary by distance between joints of individual and location of kinect sensor. Consequently, usage of this datas without kinect calibration and data optimization does not result in sufficient and healthy. In this study, proposed a novel method to calibrating kinect sensor and optimizing skeleton features. Results indicate that the proposed method is quite effective and worthy of further study in more general scenarios.
- Abstract(参考訳): 近年,医療・生体計測の分野で広く利用されている3次元視覚システムの開発が進んでいる。
Microsoft kinectセンサーは、3Dビジョンシステムの中でよく使われているカメラである。
Microsoft kinectセンサーは、シーンの奥行き画像と人間の関節の3d座標を得ることができる。
これにより、人為的特徴を容易に抽出できる。
光学的特徴とキネクトセンサーから取得した3次元共同座標の生データは不安定である。
そのため、データは個々の関節とキネクトセンサーの位置の距離によって異なる。
したがって、これらのデータの校正やデータの最適化を伴わない使用は、十分かつ健全なものにはならない。
本研究では,キネクトセンサの校正と骨格特性の最適化のための新しい手法を提案する。
その結果,提案手法は極めて有効であり,より一般的なシナリオでさらに研究する価値があることが示唆された。
関連論文リスト
- Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
本研究では,ユーザとスポット間のダイアドインタラクションにおける3次元ポーズ推定と予測のための新しいデータセットであるHARPERを紹介する。
キーノーベルティは、ロボットの視点、すなわちロボットのセンサーが捉えたデータに焦点を当てることである。
HARPERの基盤となるシナリオには15のアクションが含まれており、そのうち10つはロボットとユーザの間の物理的接触を含んでいる。
論文 参考訳(メタデータ) (2024-03-21T14:53:50Z) - Intelligent Knee Sleeves: A Real-time Multimodal Dataset for 3D Lower
Body Motion Estimation Using Smart Textile [2.2008680042670123]
本稿では,人間のポーズ推定のために,Intelligent Knee Sleevesの新たなペアを用いてベンチマークを収集したマルチモーダルデータセットを提案する。
本システムは,Knee Sleevesの時系列データと,可視化されたモーションキャプチャーカメラシステムからの対応する地上真実ラベルからなる同期データセットを利用する。
我々はこれらを用いて、異なる活動を行う個人のウェアラブルデータのみに基づく3次元人体モデルを生成する。
論文 参考訳(メタデータ) (2023-10-02T00:34:21Z) - Collaboration Helps Camera Overtake LiDAR in 3D Detection [49.58433319402405]
カメラのみの3D検出は、LiDARベースの検出システムと比較して、オブジェクトを3D空間にローカライズするための簡単なソリューションを提供する。
提案するコラボレーティブカメラのみの3D検出(CoCa3D)により,エージェントは通信を通じて相互に補完情報を共有できる。
その結果、CoCa3Dは従来のSOTA性能をDAIR-V2Xで44.21%改善し、OPV2V+で30.60%、AP@70でCoPerception-UAVs+で12.59%向上した。
論文 参考訳(メタデータ) (2023-03-23T03:50:41Z) - Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats [80.12253291709673]
本稿では,アフィン結合型オートエンコーダ(ACAE)法を提案する。
このアプローチは、28人の人間のポーズデータセットを使って1つのモデルを監督する、極端なマルチデータセット体制にスケールします。
論文 参考訳(メタデータ) (2022-12-29T22:22:49Z) - Robot Self-Calibration Using Actuated 3D Sensors [0.0]
本稿では,ロボットのキャリブレーションをオフラインのSLAM問題として扱う。
これにより、任意の眼深度センサのみを用いてロボットのキャリブレーションを行うことができる。
各種の3Dセンサーを装着した実ロボットに対して,システムの詳細評価を行った。
論文 参考訳(メタデータ) (2022-06-07T16:35:08Z) - EgoBody: Human Body Shape, Motion and Social Interactions from
Head-Mounted Devices [76.50816193153098]
EgoBodyは複雑な3Dシーンにおけるソーシャルインタラクションのための新しい大規模データセットである。
私たちはMicrosoft HoloLens2ヘッドセットを使って、RGB、奥行き、視線、頭と手のトラッキングなど、リッチなエゴセントリックなデータストリームを記録しています。
正確な3Dグラウンドトルースを得るため、マルチKinectリグでヘッドセットを校正し、多視点RGB-Dフレームに表現力のあるSMPL-Xボディーメッシュを適合させる。
論文 参考訳(メタデータ) (2021-12-14T18:41:28Z) - A Benchmark for Gait Recognition under Occlusion Collected by
Multi-Kinect SDAS [6.922350076348358]
我々はOG RGB+Dデータベースと呼ばれる新しい歩行データベースを収集し、他の歩行データベースの制限を突破する。
Azure Kinect DKは、異なるタイプの歩行認識アルゴリズムをサポートするために、同時にマルチモーダルデータを収集することができる。
人間の二重骨格モデルに基づく歩行認識手法SkeletonGaitを提案する。
論文 参考訳(メタデータ) (2021-07-19T16:01:18Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
HPS(Human POSEitioning System)は、周囲の環境の3Dスキャンで登録された人間の完全な3Dポーズを回復する手法です。
最適化に基づく統合は2つの利点を生かし、結果としてドリフトのないポーズの精度が得られることを示す。
hpsは、人間が外部カメラに直接視線を向けなくてもシーンと対話できるvr/arアプリケーションとして使用できる。
論文 参考訳(メタデータ) (2021-03-31T17:58:31Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
センサデータとセンサモデルの間に留まるパーソナルエッジプラットフォームであるSensiXを紹介する。
動作および音声に基づくマルチデバイスセンシングシステムの開発において,その有効性を示す。
評価の結果,SensiXは3mWのオーバヘッドを犠牲にして,全体の精度が7~13%向上し,環境のダイナミクスが最大30%向上することがわかった。
論文 参考訳(メタデータ) (2020-12-04T23:06:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。