Exploring Graph Structure Comprehension Ability of Multimodal Large Language Models: Case Studies
- URL: http://arxiv.org/abs/2409.08864v1
- Date: Fri, 13 Sep 2024 14:26:58 GMT
- Title: Exploring Graph Structure Comprehension Ability of Multimodal Large Language Models: Case Studies
- Authors: Zhiqiang Zhong, Davide Mottin,
- Abstract summary: This study investigates the impact of graph visualisations on Large Language Models (LLMs) performance.
Our experiments compare the effectiveness of multimodal approaches against purely textual graph representations.
- Score: 7.067145619709089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities in processing various data structures, including graphs. While previous research has focused on developing textual encoding methods for graph representation, the emergence of multimodal LLMs presents a new frontier for graph comprehension. These advanced models, capable of processing both text and images, offer potential improvements in graph understanding by incorporating visual representations alongside traditional textual data. This study investigates the impact of graph visualisations on LLM performance across a range of benchmark tasks at node, edge, and graph levels. Our experiments compare the effectiveness of multimodal approaches against purely textual graph representations. The results provide valuable insights into both the potential and limitations of leveraging visual graph modalities to enhance LLMs' graph structure comprehension abilities.
Related papers
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Multimodal Graph Benchmark [36.75510196380185]
Multimodal Graph Benchmark (MM-GRAPH) is first comprehensive multi-modal graph benchmark that incorporates both textual and visual information.
MM-GRAPH consists of five graph learning datasets of various scales that are appropriate for different learning tasks.
MM-GRAPH aims to foster research on multimodal graph learning and drive the development of more advanced and robust graph learning algorithms.
arXiv Detail & Related papers (2024-06-24T05:14:09Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
We present the Disentangled Graph-Text Learner (DGTL) model, which is able to enhance the reasoning and predicting capabilities of LLMs for TAGs.
Our proposed DGTL model incorporates graph structure information through tailored disentangled graph neural network (GNN) layers.
Experimental evaluations demonstrate the effectiveness of the proposed DGTL model on achieving superior or comparable performance over state-of-the-art baselines.
arXiv Detail & Related papers (2023-10-27T14:00:04Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.