論文の概要: Self-supervised learning for denoising quasiparticle interference data
- arxiv url: http://arxiv.org/abs/2409.08891v1
- Date: Fri, 13 Sep 2024 15:06:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:09:45.267185
- Title: Self-supervised learning for denoising quasiparticle interference data
- Title(参考訳): 擬似粒子干渉データの自己教師付き学習
- Authors: Ilse S. Kuijf, Willem O. Tromp, Tjerk Benschop, Niño Philip Ramones, Miguel Antonio Sulangi, Evert P. L. van Nieuwenburg, Milan P. Allan,
- Abstract要約: トンネル分光法は相関電子系の研究において重要な道具である。
機械学習は、後処理のノイズを低減する技術を提供する。
本研究では,教師なしノイズ2ノイズと自己教師付きノイズ2セルフアルゴリズムを適用し,クリーンな例を使わずに雑音を除去する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tunneling spectroscopy is an important tool for the study of both real-space and momentum-space electronic structure of correlated electron systems. However, such measurements often yield noisy data. Machine learning provides techniques to reduce the noise in post-processing, but traditionally requires noiseless examples which are unavailable for scientific experiments. In this work we adapt the unsupervised Noise2Noise and self-supervised Noise2Self algorithms, which allow for denoising without clean examples, to denoise quasiparticle interference data. We first apply the techniques on simulated data, and demonstrate that we are able to reduce the noise while preserving finer details, all while outperforming more traditional denoising techniques. We then apply the Noise2Self technique to experimental data from an overdoped cuprate ((Pb,Bi)$_2$Sr$_2$CuO$_{6+\delta}$) sample. Denoising enhances the clarity of quasiparticle interference patterns, and helps to obtain a precise extraction of electronic structure parameters. Self-supervised denoising is a promising tool for denoising quasiparticle interference data, facilitating deeper insights into the physics of complex materials.
- Abstract(参考訳): トンネル分光法は、相関電子系の実空間と運動量空間の電子構造を研究するための重要な道具である。
しかし、このような測定によってしばしばノイズの多いデータが得られる。
機械学習は後処理のノイズを低減する技術を提供するが、伝統的に科学実験では利用できないノイズのない例を必要とする。
本研究では,非教師付きノイズ2ノイズと自己教師型ノイズ2セルフアルゴリズムを適用し,クリーンな例を伴わずにノイズを除去し,準粒子干渉データをノイズ化する。
まず、シミュレーションデータに適用し、より微細なディテールを保ちながらノイズを低減できることを示す。
次に、オーバードープカップレート(Pb,Bi)$_2$Sr$_2$CuO$_{6+\delta}$)サンプルからの実験データに適用する。
デノジングは準粒子干渉パターンの明瞭さを高め、電子構造パラメータの精密な抽出に役立つ。
自己監督型遮蔽は準粒子干渉データをノイズ化するための有望なツールであり、複雑な物質の物理に関する深い洞察を促進する。
関連論文リスト
- Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep Image Denoisingモデルは、しばしば高品質なパフォーマンスのために大量のトレーニングデータに依存します。
本稿では,拡散モデル,すなわちRealistic Noise Synthesize Diffusor(RNSD)を用いて現実的な雑音を合成する新しい手法を提案する。
RNSDは、より現実的なノイズや空間的相関を複数の周波数で生成できるような、ガイド付きマルチスケールコンテンツを組み込むことができる。
論文 参考訳(メタデータ) (2023-05-23T12:56:01Z) - Weak-signal extraction enabled by deep-neural-network denoising of
diffraction data [26.36525764239897]
深層畳み込みニューラルネットワークを用いて、データの復号化を図示する。
ノイズの多いデータでは、電荷の順序から生じる弱信号が可視化され、精度が向上することを示す。
論文 参考訳(メタデータ) (2022-09-19T14:43:01Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
センサの実際の雑音を直接サンプリングすることで、ノイズを合成する新しい視点を導入する。
それは本質的に、異なるカメラセンサーに対して正確な生画像ノイズを発生させる。
論文 参考訳(メタデータ) (2021-10-10T10:45:24Z) - Removing Noise from Extracellular Neural Recordings Using Fully
Convolutional Denoising Autoencoders [62.997667081978825]
ノイズの多いマルチチャネル入力からクリーンなニューロン活動信号を生成することを学習する完全畳み込みデノイングオートエンコーダを提案する。
シミュレーションデータを用いた実験結果から,提案手法はノイズ崩壊型ニューラルネットワークの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-09-18T14:51:24Z) - The potential of self-supervised networks for random noise suppression
in seismic data [0.0]
ブラインド・スポット・ネットワークは地震データにおけるランダムノイズの効率的な抑制効果を示す。
結果は、FXデコンボリューションとCurvelet変換という2つの一般的なランダムな復調手法と比較される。
これは、地震の応用における自己教師あり学習の活用の始まりにすぎないと我々は信じている。
論文 参考訳(メタデータ) (2021-09-15T14:57:43Z) - Deep learning-based statistical noise reduction for multidimensional
spectral data [3.0396858935319724]
我々は,ディープラーニングを制約を克服するインテリジェントな方法として活用する認知的手法を実証する。
我々は,2桁の取得時間で取得したデータに対して,デノナイジングニューラルネットワークによって同様の2次微分および線形状解析を行うことができることを示した。
論文 参考訳(メタデータ) (2021-07-02T05:37:16Z) - Adaptive noise imitation for image denoising [58.21456707617451]
本研究では,自然雑音画像からノイズデータを合成できる新しいテキストバッファ適応ノイズ模倣(ADANI)アルゴリズムを開発した。
現実的なノイズを生成するため、ノイズ発生装置はノイズ発生のガイドとなる雑音/クリーン画像を入力として利用する。
ADANIから出力されるノイズデータとそれに対応する基盤構造とを結合すると、デノイングCNNは、完全に教師された方法で訓練される。
論文 参考訳(メタデータ) (2020-11-30T02:49:36Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
本稿では,新しい自己教師型デノベーションフレームワークであるNoss2Sameを紹介する。
特にノイズ2Sameは、ノイズモデルに関するJ-不変性や余分な情報を必要としない。
以上の結果から,ノイズ2Sameは従来の自己監督型遮音法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2020-10-22T18:12:26Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
合成データで訓練されたデノイザーは、未知のノイズの多様性に対処できないことが多い。
従来の画像ベース手法は、ビデオデノイザに直接適用した場合、ノイズが過度に収まる。
本稿では,これらの課題に対処する上で有効な,ビデオ・デノベーション・ネットワークの汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-07T07:19:48Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverseは、線形画像再構成アルゴリズムのためのディープCNNに基づくDenoising法である。
そこで我々は,そのような学習がCNNを実際に獲得することを示す理論的枠組みを構築した。
シミュレーションCTデータセットにおいて、Noss2Inverseはピーク信号対雑音比と構造類似度指数の改善を示す。
論文 参考訳(メタデータ) (2020-01-31T12:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。