AI-LieDar: Examine the Trade-off Between Utility and Truthfulness in LLM Agents
- URL: http://arxiv.org/abs/2409.09013v1
- Date: Fri, 13 Sep 2024 17:41:12 GMT
- Title: AI-LieDar: Examine the Trade-off Between Utility and Truthfulness in LLM Agents
- Authors: Zhe Su, Xuhui Zhou, Sanketh Rangreji, Anubha Kabra, Julia Mendelsohn, Faeze Brahman, Maarten Sap,
- Abstract summary: We study how language agents navigate scenarios with utility-truthfulness conflicts in a multi-turn interactive setting.
We develop a truthfulness detector inspired by psychological literature to assess the agents' responses.
Our experiment demonstrates that all models are truthful less than 50% of the time, although truthfulness and goal achievement (utility) rates vary across models.
- Score: 27.10147264744531
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: To be safely and successfully deployed, LLMs must simultaneously satisfy truthfulness and utility goals. Yet, often these two goals compete (e.g., an AI agent assisting a used car salesman selling a car with flaws), partly due to ambiguous or misleading user instructions. We propose AI-LieDar, a framework to study how LLM-based agents navigate scenarios with utility-truthfulness conflicts in a multi-turn interactive setting. We design a set of realistic scenarios where language agents are instructed to achieve goals that are in conflict with being truthful during a multi-turn conversation with simulated human agents. To evaluate the truthfulness at large scale, we develop a truthfulness detector inspired by psychological literature to assess the agents' responses. Our experiment demonstrates that all models are truthful less than 50% of the time, although truthfulness and goal achievement (utility) rates vary across models. We further test the steerability of LLMs towards truthfulness, finding that models follow malicious instructions to deceive, and even truth-steered models can still lie. These findings reveal the complex nature of truthfulness in LLMs and underscore the importance of further research to ensure the safe and reliable deployment of LLMs and AI agents.
Related papers
- To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity [27.10502683001428]
This paper focuses on entity type ambiguity, analyzing the proficiency and consistency of state-of-the-art LLMs in applying factual knowledge when prompted with ambiguous entities.
Experiments reveal that LLMs struggle with choosing the correct entity reading, achieving an average accuracy of only 85%, and as low as 75% with underspecified prompts.
arXiv Detail & Related papers (2024-07-24T09:48:48Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression [19.69104070561701]
Large language models (LLMs) can generate long-form and coherent text, yet they often hallucinate facts.
We propose LITO, a Learnable Intervention method for Truthfulness Optimization.
Experiments on multiple LLMs and question-answering datasets demonstrate that LITO improves truthfulness while preserving task accuracy.
arXiv Detail & Related papers (2024-05-01T03:50:09Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Deception Abilities Emerged in Large Language Models [0.0]
Large language models (LLMs) are currently at the forefront of intertwining artificial intelligence (AI) systems with human communication and everyday life.
This study reveals that such strategies emerged in state-of-the-art LLMs, such as GPT-4, but were non-existent in earlier LLMs.
We conduct a series of experiments showing that state-of-the-art LLMs are able to understand and induce false beliefs in other agents.
arXiv Detail & Related papers (2023-07-31T09:27:01Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making
using Language Guided World Modelling [101.59430768507997]
Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world.
We propose using few-shot large language models (LLMs) to hypothesize an Abstract World Model (AWM)
Our method of hypothesizing an AWM with LLMs and then verifying the AWM based on agent experience not only increases sample efficiency over contemporary methods by an order of magnitude.
arXiv Detail & Related papers (2023-01-28T02:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.