INN-PAR: Invertible Neural Network for PPG to ABP Reconstruction
- URL: http://arxiv.org/abs/2409.09021v1
- Date: Fri, 13 Sep 2024 17:48:48 GMT
- Title: INN-PAR: Invertible Neural Network for PPG to ABP Reconstruction
- Authors: Soumitra Kundu, Gargi Panda, Saumik Bhattacharya, Aurobinda Routray, Rajlakshmi Guha,
- Abstract summary: We introduce an invertible neural network for PPG to ABP reconstruction (INN-PAR)
INN-PAR efficiently captures both forward and inverse mappings simultaneously, thereby preventing information loss.
We propose a multi-scale convolution module (MSCM) within the invertible block, enabling the model to learn features across multiple scales effectively.
- Score: 9.127220498800645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-invasive and continuous blood pressure (BP) monitoring is essential for the early prevention of many cardiovascular diseases. Estimating arterial blood pressure (ABP) from photoplethysmography (PPG) has emerged as a promising solution. However, existing deep learning approaches for PPG-to-ABP reconstruction (PAR) encounter certain information loss, impacting the precision of the reconstructed signal. To overcome this limitation, we introduce an invertible neural network for PPG to ABP reconstruction (INN-PAR), which employs a series of invertible blocks to jointly learn the mapping between PPG and its gradient with the ABP signal and its gradient. INN-PAR efficiently captures both forward and inverse mappings simultaneously, thereby preventing information loss. By integrating signal gradients into the learning process, INN-PAR enhances the network's ability to capture essential high-frequency details, leading to more accurate signal reconstruction. Moreover, we propose a multi-scale convolution module (MSCM) within the invertible block, enabling the model to learn features across multiple scales effectively. We have experimented on two benchmark datasets, which show that INN-PAR significantly outperforms the state-of-the-art methods in both waveform reconstruction and BP measurement accuracy.
Related papers
- Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation [70.43845294145714]
Relieving the reliance of neural network training on a global back-propagation (BP) has emerged as a notable research topic.
We propose a local training strategy that successively regularizes the gradient reconciliation between neighboring modules.
Our method can be integrated into both local-BP and BP-free settings.
arXiv Detail & Related papers (2024-06-07T19:10:31Z) - Constraint Latent Space Matters: An Anti-anomalous Waveform
Transformation Solution from Photoplethysmography to Arterial Blood Pressure [17.44605140428367]
Arterial blood pressure (ABP) holds substantial promise for proactive cardiovascular health management.
Recent strides in PPG-ABP prediction encompass the integration of generative and discriminative models.
We present an innovative solution named the Latent Space Constraint Transformer (LSCT), leveraging a quantized codebook to yield robust latent spaces.
arXiv Detail & Related papers (2024-02-23T02:31:35Z) - Residual Feature Pyramid Network for Enhancement of Vascular Patterns [0.0]
We propose a finger-vein enhancement technique, ResFPN, as a generic preprocessing method to the recognition pipeline.
A bottom-up pyramidal architecture using the novel Structure Detection block (SDBlock) facilitates extraction of veins of varied widths.
With enhanced presentations, our experiments indicate a reduction upto 5% in the average recognition errors for commonly used recognition pipeline.
arXiv Detail & Related papers (2023-06-29T09:14:42Z) - Novel Blood Pressure Waveform Reconstruction from Photoplethysmography
using Cycle Generative Adversarial Networks [2.0253391348983]
Continuous monitoring of blood pressure (BP)can help individuals manage their chronic diseases as hypertension.
We propose a cycle generative adversarial network (CycleGAN) based approach to extract a BP signal as ambulatory blood pressure (ABP) from a clean PPG signal.
Our approach uses a cycle generative adversarial network that extends theGAN architecture for domain translation, and outperforms state-of-the-art approaches by up to 2x in BP estimation.
arXiv Detail & Related papers (2022-01-24T22:14:58Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - Towards Evaluating and Training Verifiably Robust Neural Networks [81.39994285743555]
We study the relationship between IBP and CROWN, and prove that CROWN is always tighter than IBP when choosing appropriate bounding lines.
We propose a relaxed version of CROWN, linear bound propagation (LBP), that can be used to verify large networks to obtain lower verified errors.
arXiv Detail & Related papers (2021-04-01T13:03:48Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
We aim to develop an efficient and compact deep network for RGB-D salient object detection.
We propose a progressively guided alternate refinement network to refine it.
Our model outperforms existing state-of-the-art approaches by a large margin.
arXiv Detail & Related papers (2020-08-17T02:55:06Z) - Estimating Blood Pressure from Photoplethysmogram Signal and Demographic
Features using Machine Learning Techniques [0.0]
Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP)
Continuous monitoring of BP is very important; however, BP measurements are discrete and uncomfortable to the user.
To address this need, a cuffless, continuous and a non-invasive BP measurement system is proposed.
arXiv Detail & Related papers (2020-05-07T09:45:02Z) - PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood
Pressure (ABP) Waveforms using Fully Convolutional Neural Networks [1.0045192779791103]
We develop a method to predict the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using photoplethysmogram signals.
We present, PPG2ABP, a deep learning based method, that manages to predict the continuous ABP waveform from the input PPG signal, with a mean absolute error of 4.604 mmHg.
The more astounding success of PPG2ABP turns out to be that the computed values of DBP, MAP and SBP from the predicted ABP waveform outperforms the existing works under several metrics.
arXiv Detail & Related papers (2020-05-04T17:22:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.