Proactive and Reactive Constraint Programming for Stochastic Project Scheduling with Maximal Time-Lags
- URL: http://arxiv.org/abs/2409.09107v1
- Date: Fri, 13 Sep 2024 15:01:25 GMT
- Title: Proactive and Reactive Constraint Programming for Stochastic Project Scheduling with Maximal Time-Lags
- Authors: Kim van den Houten, Léon Planken, Esteban Freydell, David M. J. Tax, Mathijs de Weerdt,
- Abstract summary: This study investigates scheduling strategies for the resource-constrained project scheduling problem with maximal time lags (SRCPSP/max)
Recent advances in Constraint Programming (CP) and Temporal Networks have reinvoked interest in evaluating the advantages and drawbacks of various proactive and reactive scheduling methods.
- Score: 3.723602673856398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates scheduling strategies for the stochastic resource-constrained project scheduling problem with maximal time lags (SRCPSP/max)). Recent advances in Constraint Programming (CP) and Temporal Networks have reinvoked interest in evaluating the advantages and drawbacks of various proactive and reactive scheduling methods. First, we present a new, CP-based fully proactive method. Second, we show how a reactive approach can be constructed using an online rescheduling procedure. A third contribution is based on partial order schedules and uses Simple Temporal Networks with Uncertainty (STNUs). Our statistical analysis shows that the STNU-based algorithm performs best in terms of solution quality, while also showing good relative offline and online computation time.
Related papers
- Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
This research aims to develop an innovative approach that employs machine learning (ML) for addressing optimization problems.
We introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) solver as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP.
Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $times$ speed improvements.
arXiv Detail & Related papers (2023-08-19T15:52:43Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Genetic algorithms for the resource-constrained project scheduling
problem in aircraft heavy maintenance [0.0]
This article proposes genetic algorithms for solving the resource-constrained project scheduling problem (RCPSP) in AHM.
The objective of the study was to minimise the makespan of the maintenance plan.
arXiv Detail & Related papers (2022-06-16T13:41:20Z) - Efficient Temporal Piecewise-Linear Numeric Planning with Lazy
Consistency Checking [4.834203844100679]
We propose a set of techniques that allow the planner to compute LP consistency checks lazily where possible.
We also propose an algorithm to perform duration-dependent goal checking more selectively.
The resultant planner is not only more efficient, but outperforms most state-of-the-art temporal-numeric and hybrid planners.
arXiv Detail & Related papers (2021-05-21T07:36:54Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Time-varying Gaussian Process Bandit Optimization with Non-constant
Evaluation Time [93.6788993843846]
We propose a novel time-varying Bayesian optimization algorithm that can effectively handle the non-constant evaluation time.
Our bound elucidates that a pattern of the evaluation time sequence can hugely affect the difficulty of the problem.
arXiv Detail & Related papers (2020-03-10T13:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.