論文の概要: Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
- arxiv url: http://arxiv.org/abs/2409.09412v2
- Date: Tue, 21 Jan 2025 23:23:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:36.628101
- Title: Label Convergence: Defining an Upper Performance Bound in Object Recognition through Contradictory Annotations
- Title(参考訳): ラベル収束:コントラクショナルアノテーションによるオブジェクト認識における上位性能境界の定義
- Authors: David Tschirschwitz, Volker Rodehorst,
- Abstract要約: 矛盾するテストアノテーションの制約の下で達成可能な最高性能を記述するために,「ラベル収束」の概念を導入する。
ラベル収束は LVIS の場合 62.63-67.52 mAP@[0.5:0.95:0.05] であり、95% の信頼度を持つ。
LVISデータセットのラベル収束間隔の上端にある現在の最先端(SOTA)モデルでは、モデルキャパシティが現在のオブジェクト検出問題を解決するのに十分である、と結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Annotation errors are a challenge not only during training of machine learning models, but also during their evaluation. Label variations and inaccuracies in datasets often manifest as contradictory examples that deviate from established labeling conventions. Such inconsistencies, when significant, prevent models from achieving optimal performance on metrics such as mean Average Precision (mAP). We introduce the notion of "label convergence" to describe the highest achievable performance under the constraint of contradictory test annotations, essentially defining an upper bound on model accuracy. Recognizing that noise is an inherent characteristic of all data, our study analyzes five real-world datasets, including the LVIS dataset, to investigate the phenomenon of label convergence. We approximate that label convergence is between 62.63-67.52 mAP@[0.5:0.95:0.05] for LVIS with 95% confidence, attributing these bounds to the presence of real annotation errors. With current state-of-the-art (SOTA) models at the upper end of the label convergence interval for the well-studied LVIS dataset, we conclude that model capacity is sufficient to solve current object detection problems. Therefore, future efforts should focus on three key aspects: (1) updating the problem specification and adjusting evaluation practices to account for unavoidable label noise, (2) creating cleaner data, especially test data, and (3) including multi-annotated data to investigate annotation variation and make these issues visible from the outset.
- Abstract(参考訳): アノテーションエラーは、機械学習モデルのトレーニング中だけでなく、評価中にも問題となる。
データセットにおけるラベルのバリエーションと不正確さは、しばしば、確立されたラベル付け規則から逸脱する矛盾した例として表される。
このような矛盾は、重要な場合、平均的平均精度(mAP)のようなメトリクス上でモデルが最適なパフォーマンスを達成するのを防ぐ。
本稿では、矛盾するテストアノテーションの制約の下で達成可能な最高の性能を記述するために「ラベル収束」の概念を導入し、基本的にモデル精度の上限を定義する。
LVISデータセットを含む5つの実世界のデータセットを分析し,ラベル収束現象について検討した。
ラベル収束は LVIS の場合 62.63-67.52 mAP@[0.5:0.95:0.05] であり、95% の信頼度を持つ。
LVISデータセットのラベル収束間隔の上端にある現在の最先端(SOTA)モデルでは、モデルキャパシティが現在のオブジェクト検出問題を解決するのに十分である、と結論付けている。
したがって,(1) 問題仕様の更新,(2) 回避不能なラベルノイズを考慮した評価プラクティスの調整,(2) よりクリーンなデータ,特にテストデータの作成,(3) アノテーションの変動を調査し,これらの問題を最初から可視化するマルチアノテートデータを含む,3つの重要な側面に重点を置く必要がある。
関連論文リスト
- Mitigating Distributional Shift in Semantic Segmentation via Uncertainty
Estimation from Unlabelled Data [19.000718685399935]
本研究では,1回のフォワードパスで追加のアノテーションを使わずに,テストドメインの挑戦によるエラーを検出するセグメンテーションネットワークを提案する。
我々は、データ拡張に対する一貫性を強制することによって、不確実性推定を選択的に行うことを学ぶために、簡単で不正確で不確実なデータを使用する。
提案手法はGamma-SSLと名付けられ,不確実性推定とOoD(Out-of-Distribution)技術より一貫して優れている。
論文 参考訳(メタデータ) (2024-02-27T16:23:11Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
機械学習モデルを確実に使用するためには、デプロイメント時のデータの不整合の特定と適切な処理が不可欠である。
我々は,有向非巡回グラフ(DAG)を用いて,トレーニングセットの特徴分布と非依存性を構造として符号化する。
我々の手法はDAGnosisと呼ばれ、これらの構造的相互作用を利用して、価値があり洞察に富んだデータ中心の結論をもたらす。
論文 参考訳(メタデータ) (2024-02-26T11:29:16Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
本稿では, 線形回帰モデルが学習データセットのラベルバイアスに対して, ポイントワイズで損なわれているかどうかを検証する手法を提案する。
この問題を個々のテストポイントに対して正確に解く方法を示し、近似的だがよりスケーラブルな方法を提供する。
また、いくつかのデータセット上の特定のバイアス仮定に対して、高いレベルの非腐食性など、バイアス-腐食性のギャップを掘り下げる。
論文 参考訳(メタデータ) (2022-06-07T20:47:07Z) - Understanding Factual Errors in Summarization: Errors, Summarizers,
Datasets, Error Detectors [105.12462629663757]
本研究では、既存の9つのデータセットから事実性エラーアノテーションを集約し、基礎となる要約モデルに従ってそれらを階層化する。
本稿では,この階層化ベンチマークにおいて,最近のChatGPTベースの指標を含む最先端の事実性指標の性能を比較し,その性能が様々な種類の要約モデルで大きく異なることを示す。
論文 参考訳(メタデータ) (2022-05-25T15:26:48Z) - Striking a Balance: Alleviating Inconsistency in Pre-trained Models for
Symmetric Classification Tasks [4.971443651456398]
不整合は、予測されたラベルまたは信頼スコアでしばしば観察される。
我々は、このモデルの欠点を強調し、対称分類の不整合を軽減するために整合損失関数を適用した。
その結果,精度の低下を伴わない3つのパラフレーズ検出データセットに対する予測の整合性が改善された。
論文 参考訳(メタデータ) (2022-03-25T07:55:39Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
本研究では、教師なしデータ拡張を行うために、微分可能な幾何ワープを提案する。
また,平均教師数を改善するために,新しい対角的二重学習フレームワークを提案する。
我々のソリューションは、両方のデータセットで得られるパフォーマンスと最先端の結果を大幅に改善します。
論文 参考訳(メタデータ) (2022-03-05T17:36:17Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。