論文の概要: Measuring the Influence of Incorrect Code on Test Generation
- arxiv url: http://arxiv.org/abs/2409.09464v3
- Date: Fri, 28 Mar 2025 03:00:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:30:36.795079
- Title: Measuring the Influence of Incorrect Code on Test Generation
- Title(参考訳): 誤り符号がテスト生成に及ぼす影響の測定
- Authors: Dong Huang, Jie M. Zhang, Mark Harman, Mingzhe Du, Heming Cui,
- Abstract要約: 間違ったコードエクスペリエンスのために生成されたテストは、バグ検出率を47%上回っている。
+18%の精度、+4%のカバレッジ、+34%のバグ検出の改善は、自然言語によるコード記述を提供することで達成できる。
- 参考スコア(独自算出の注目度): 22.168699378889148
- License:
- Abstract: It is natural to suppose that a Large Language Model is more likely to generate correct test cases when prompted with correct code under test, compared to incorrect code under test. However, the size of this effect has never been previously measured, despite its obvious importance for both practicing software engineers and researchers. To answer the question, we conducted a comprehensive empirical study on 5 open source and 6 closed source language models, with 3 widely-used benchmark data sets together with 41 repo-level real-world examples from two different real-world data sets. Our results reveal that, when compared to incorrect code under test, LLMs prompted with correct code achieve improvements in test accuracy, code coverage, and bug detection of 57\%, 12\%, and 24\% respectively. We further show that these scientific conclusions carry over from the three benchmark data sets to the real-world code, where tests generated for incorrect code experience a 47\% worse bug detection rate. Finally, we report that improvements of +18\% in accuracy, +4\% coverage, and +34\% in bug detection can be achieved by providing natural language code descriptions. These findings have actionable conclusions. For example, the 47\% reduction in real-world bug detection is a clear concern. Fortunately, it is a concern for which our findings about the added value of descriptions offer an immediately actionable remedy.
- Abstract(参考訳): 大規模な言語モデルは、テスト中の間違ったコードと比較して、テスト中の正しいコードでトリガーすると、正しいテストケースを生成する可能性が高いと仮定するのは自然なことです。
しかし、この効果の大きさは、ソフトウェアエンジニアと研究者の両方にとって明らかに重要であるにもかかわらず、これまで測定されたことはない。
そこで我々は,5つのオープンソースモデルと6つのクローズドソース言語モデルに関する総合的研究を行い,3つの広く使用されているベンチマークデータセットと41のレポレベルの実世界の2つの異なる実世界のデータセットを比較検討した。
その結果, テスト中の不正コードと比較すると, LLMでは, テスト精度, コードカバレッジ, バグ検出精度が57~%, 12~%, 24~%向上していることがわかった。
さらに、これらの科学的結論が3つのベンチマークデータセットから実世界のコードへと続くことを示す。
最後に、自然言語のコード記述を提供することで、+18\%の精度、+4\%のカバレッジ、+34\%のバグ検出の改善が達成できると報告する。
これらの発見には、実用的な結論がある。
例えば、実世界のバグ検出の47\%削減は明らかな懸念である。
幸いなことに、記述の付加価値に関する我々の発見が、直ちに実行可能な治療を提供するという懸念があります。
関連論文リスト
- MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark [57.999567012489706]
我々は,MMLU-CFと呼ばれる汚染のない,より困難なベンチマークを提案する。
このベンチマークは、意図しないデータ漏洩と悪意のないデータ漏洩の両方を回避することで、LLMの世界の知識に対する理解を再評価する。
GPT-4o は 5 ショットスコア73.4% と 0 ショットスコア71.9% しか達成できない。
論文 参考訳(メタデータ) (2024-12-19T18:58:04Z) - Design choices made by LLM-based test generators prevent them from finding bugs [0.850206009406913]
本稿は,最近のLCMベースのテスト生成ツールであるCodium CoverAgentやCoverUpが,効果的にバグを見つけたり,意図せずに欠陥コードを検証することができるかどうかを,批判的に検証する。
実際の人手によるバグ検出コードを入力として使用すると、これらのツールを評価し、LCM生成テストがバグの検出に失敗する可能性を示し、さらに警告として、生成されたテストスイートのバグを検証することで、その設計が状況を悪化させる可能性があることを示します。
論文 参考訳(メタデータ) (2024-12-18T18:33:26Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - Test-Driven Development for Code Generation [0.850206009406913]
大きな言語モデル(LLM)は、問題ステートメントから直接コードスニペットを生成する重要な機能を示している。
本稿では,テスト駆動開発(TDD)をAI支援コード生成プロセスに組み込む方法について検討する。
論文 参考訳(メタデータ) (2024-02-21T04:10:12Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
ChatGPTのような大規模言語モデル(LLM)は、事前学習や微調整の知識が豊富にあるため、様々な応用がある。
それにもかかわらず、医療、ジャーナリズム、教育といった重要な分野に懸念を抱き、事実と常識の誤りを引き起こす傾向にある。
LLMにおける事実不正確な事実を明らかにすることを目的とした,新しい自動テストフレームワークであるFactCheckerを紹介する。
論文 参考訳(メタデータ) (2024-01-01T14:02:27Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Self-Edit: Fault-Aware Code Editor for Code Generation [46.890689359396724]
大規模言語モデル(LLM)は、競合するプログラミングタスクのコードを生成する素晴らしい能力を示している。
競合するプログラミングタスクにおけるコード品質を改善するために,Self-Editという生成・編集手法を提案する。
論文 参考訳(メタデータ) (2023-05-06T16:12:19Z) - Large Language Models are Few-shot Testers: Exploring LLM-based General
Bug Reproduction [14.444294152595429]
問題によりオープンソースリポジトリに追加されたテストの数は、対応するプロジェクトテストスイートサイズの約28%であった。
本稿では,Large Language Models (LLMs) を用いたLIBROを提案する。
LIBROの評価は、広く研究されているDefects4Jベンチマークにおいて、全ての研究ケースの33%で障害再現テストケースを生成することができることを示している。
論文 参考訳(メタデータ) (2022-09-23T10:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。