論文の概要: Towards Generating Functionally Correct Code Edits from Natural Language
Issue Descriptions
- arxiv url: http://arxiv.org/abs/2304.03816v1
- Date: Fri, 7 Apr 2023 18:58:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 19:30:41.204846
- Title: Towards Generating Functionally Correct Code Edits from Natural Language
Issue Descriptions
- Title(参考訳): 自然言語問題記述から機能的に正しいコード編集を生成すること
- Authors: Sarah Fakhoury, Saikat Chakraborty, Madan Musuvathi, and Shuvendu K.
Lahiri
- Abstract要約: Defects4J-NL2Fixは、人気のあるDefects4Jデータセットから283のJavaプログラムのデータセットで、バグ修正の高レベルな記述を付加します。
本研究は,この課題に対するいくつかの最先端LCMの性能を実証的に評価する。
- 参考スコア(独自算出の注目度): 11.327913840111378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), such as OpenAI's Codex, have demonstrated their
potential to generate code from natural language descriptions across a wide
range of programming tasks. Several benchmarks have recently emerged to
evaluate the ability of LLMs to generate functionally correct code from natural
language intent with respect to a set of hidden test cases. This has enabled
the research community to identify significant and reproducible advancements in
LLM capabilities. However, there is currently a lack of benchmark datasets for
assessing the ability of LLMs to generate functionally correct code edits based
on natural language descriptions of intended changes. This paper aims to
address this gap by motivating the problem NL2Fix of translating natural
language descriptions of code changes (namely bug fixes described in Issue
reports in repositories) into correct code fixes. To this end, we introduce
Defects4J-NL2Fix, a dataset of 283 Java programs from the popular Defects4J
dataset augmented with high-level descriptions of bug fixes, and empirically
evaluate the performance of several state-of-the-art LLMs for the this task.
Results show that these LLMS together are capable of generating plausible fixes
for 64.6% of the bugs, and the best LLM-based technique can achieve up to
21.20% top-1 and 35.68% top-5 accuracy on this benchmark.
- Abstract(参考訳): OpenAIのCodexのような大規模言語モデル(LLM)は、幅広いプログラミングタスクにわたる自然言語記述からコードを生成する可能性を実証している。
最近、いくつかのベンチマークが出現し、隠されたテストケースの集合に関して自然言語の意図から機能的に正しいコードを生成するLLMの能力を評価している。
これにより、研究コミュニティはLLM能力の重要かつ再現可能な進歩を特定できるようになった。
しかし、現在、意図した変更の自然言語記述に基づいて、機能的に正しいコード編集を生成するLLMの能力を評価するためのベンチマークデータセットが不足している。
本稿は,NL2Fixがコード変更の自然言語記述(すなわち,リポジトリのイシューレポートに記載されているバグフィックス)を正しいコード修正に変換することで,このギャップに対処することを目的とする。
この目的のために,Defects4J-NL2Fixを紹介した。Defects4Jデータセットから283のJavaプログラムのデータセットで,バグ修正の高レベルな記述を付加し,そのタスクに対する最先端のLLMの性能を実証的に評価する。
その結果、これらのLLMSは64.6%のバグに対して妥当な修正を生成でき、最高のLCMベースの技術はこのベンチマークで21.20%のトップ1と35.68%のトップ5の精度を達成できることがわかった。
関連論文リスト
- Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Bug In the Code Stack: Can LLMs Find Bugs in Large Python Code Stacks [1.3586572110652484]
本研究では,大規模文書から文脈情報を取得する上でのLLM(Large Language Models)の機能について検討する。
我々のベンチマークであるBug In The Code Stack (BICS)は、大規模なソースコード内の単純な構文バグを識別するLLMの能力を評価するために設計されている。
その結果,(1)検索タスクのテキストベースの環境に比べ,コードベースの環境の方が有意に困難であり,(2)異なるモデル間の性能差が大きく,(3)コンテキスト長と性能劣化との間には顕著な相関関係があることが判明した。
論文 参考訳(メタデータ) (2024-06-21T17:37:10Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
研究によると、ある文の文法的誤りは、それを他の言語に翻訳し、その語を返せば修正できる。
現在の自動プログラム修復(APR)生成モデルは、ソースコードで事前訓練され、修正のために微調整されている。
本稿では,あるプログラミング言語から別のプログラミング言語,あるいは自然言語へのコード変換,そして,その逆といった,微調整ステップをバイパスし,ラウンド・トリップ変換(RTT)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T22:36:31Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Evaluating Diverse Large Language Models for Automatic and General Bug
Reproduction [12.851941377433285]
大規模言語モデル(LLM)は自然言語処理やコード生成に適していることが証明されている。
提案手法は,広く使用されているDefects4Jベンチマークにおいて,全バグの約3分の1を再現することができた。
論文 参考訳(メタデータ) (2023-11-08T08:42:30Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。