Measuring the Influence of Incorrect Code on Test Generation
- URL: http://arxiv.org/abs/2409.09464v3
- Date: Fri, 28 Mar 2025 03:00:37 GMT
- Title: Measuring the Influence of Incorrect Code on Test Generation
- Authors: Dong Huang, Jie M. Zhang, Mark Harman, Mingzhe Du, Heming Cui,
- Abstract summary: We show that tests generated for incorrect code experience a 47% worse bug detection rate.<n>Improvements of +18% in accuracy, +4% coverage, and +34% in bug detection can be achieved by providing natural language code descriptions.
- Score: 22.168699378889148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is natural to suppose that a Large Language Model is more likely to generate correct test cases when prompted with correct code under test, compared to incorrect code under test. However, the size of this effect has never been previously measured, despite its obvious importance for both practicing software engineers and researchers. To answer the question, we conducted a comprehensive empirical study on 5 open source and 6 closed source language models, with 3 widely-used benchmark data sets together with 41 repo-level real-world examples from two different real-world data sets. Our results reveal that, when compared to incorrect code under test, LLMs prompted with correct code achieve improvements in test accuracy, code coverage, and bug detection of 57\%, 12\%, and 24\% respectively. We further show that these scientific conclusions carry over from the three benchmark data sets to the real-world code, where tests generated for incorrect code experience a 47\% worse bug detection rate. Finally, we report that improvements of +18\% in accuracy, +4\% coverage, and +34\% in bug detection can be achieved by providing natural language code descriptions. These findings have actionable conclusions. For example, the 47\% reduction in real-world bug detection is a clear concern. Fortunately, it is a concern for which our findings about the added value of descriptions offer an immediately actionable remedy.
Related papers
- Quality Assessment of Python Tests Generated by Large Language Models [1.0845500038686533]
This study investigates the quality of Python test code generated by three Large Language Models: GPT-4o, Amazon Q, and LLama 3.3.<n>We evaluate the structural reliability of test suites generated under two distinct prompt contexts: Text2Code (T2C) and Code2Code (C2C)
arXiv Detail & Related papers (2025-06-17T08:16:15Z) - CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification [71.34070740261072]
This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases.
The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
arXiv Detail & Related papers (2025-02-12T21:42:56Z) - AsserT5: Test Assertion Generation Using a Fine-Tuned Code Language Model [8.995812770349602]
We propose AsserT5, a new model based on the pre-trained CodeT5 model.
We find that the abstraction and the inclusion of the focal method are useful also for a fine-tuned pre-trained model.
arXiv Detail & Related papers (2025-02-04T20:42:22Z) - DeCon: Detecting Incorrect Assertions via Postconditions Generated by a Large Language Model [22.38753408614465]
We propose a new approach named DeCon to effectively detect incorrect assertions via LLM-generated postconditions for the target problem.
DeCon can detect averagely more than 64% (63% and 65.5% detected by GPT-3.5 and GPT-4, respectively) incorrect assertions generated by four state-of-the-art LLMs.
arXiv Detail & Related papers (2025-01-06T10:25:28Z) - Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
We analyzed 2,401 code review comments from Java open-source projects on GitHub.
83.9% of suggestions for improvement were accepted and integrated, with fewer than 1% later reverted.
arXiv Detail & Related papers (2024-10-29T12:21:23Z) - Improving LLM-based Unit test generation via Template-based Repair [8.22619177301814]
Unit test is crucial for detecting bugs in individual program units but consumes time and effort.
Large language models (LLMs) have demonstrated remarkable reasoning and generation capabilities.
In this paper, we propose TestART, a novel unit test generation method.
arXiv Detail & Related papers (2024-08-06T10:52:41Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
We study how well Large Language Models can generate high-quality test cases.
We propose a multi-agent framework called emphTestChain that decouples the generation of test inputs and test outputs.
Our results indicate that TestChain outperforms the baseline by a large margin.
arXiv Detail & Related papers (2024-04-20T10:27:01Z) - GPT-HateCheck: Can LLMs Write Better Functional Tests for Hate Speech Detection? [50.53312866647302]
HateCheck is a suite for testing fine-grained model functionalities on synthesized data.
We propose GPT-HateCheck, a framework to generate more diverse and realistic functional tests from scratch.
Crowd-sourced annotation demonstrates that the generated test cases are of high quality.
arXiv Detail & Related papers (2024-02-23T10:02:01Z) - Test-Driven Development for Code Generation [0.850206009406913]
Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements.
This paper investigates if and how Test-Driven Development (TDD) can be incorporated into AI-assisted code-generation processes.
arXiv Detail & Related papers (2024-02-21T04:10:12Z) - DebugBench: Evaluating Debugging Capability of Large Language Models [80.73121177868357]
DebugBench is a benchmark for Large Language Models (LLMs)
It covers four major bug categories and 18 minor types in C++, Java, and Python.
We evaluate two commercial and four open-source models in a zero-shot scenario.
arXiv Detail & Related papers (2024-01-09T15:46:38Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
Large Language Models (LLMs) like ChatGPT are in various applications due to their extensive knowledge from pre-training and fine-tuning.
Despite this, they are prone to generating factual and commonsense errors, raising concerns in critical areas like healthcare, journalism, and education.
We introduce a novel, automatic testing framework, FactChecker, aimed at uncovering factual inaccuracies in LLMs.
arXiv Detail & Related papers (2024-01-01T14:02:27Z) - Back to the Future! Studying Data Cleanness in Defects4J and its Impact on Fault Localization [3.8040257966829802]
We examine Defects4J's fault-triggering tests, emphasizing the implications of developer knowledge of SBFL techniques.
We found that 55% of the fault-triggering tests were newly added to replicate the bug or to test for regression.
We also found that 22% of the fault-triggering tests were modified after the bug reports were created, containing developer knowledge of the bug.
arXiv Detail & Related papers (2023-10-29T20:19:06Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Zero-Shot Detection of Machine-Generated Codes [83.0342513054389]
This work proposes a training-free approach for the detection of LLMs-generated codes.
We find that existing training-based or zero-shot text detectors are ineffective in detecting code.
Our method exhibits robustness against revision attacks and generalizes well to Java codes.
arXiv Detail & Related papers (2023-10-08T10:08:21Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
We introduce MuTAP for improving the effectiveness of test cases generated by Large Language Models (LLMs) in terms of revealing bugs.
MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs)
Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets.
arXiv Detail & Related papers (2023-08-31T08:48:31Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - Self-Edit: Fault-Aware Code Editor for Code Generation [46.890689359396724]
Large language models (LLMs) have demonstrated an impressive ability to generate codes on competitive programming tasks.
We propose a generate-and-edit approach named Self-Edit to improve the code quality on the competitive programming task.
arXiv Detail & Related papers (2023-05-06T16:12:19Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - Towards Generating Functionally Correct Code Edits from Natural Language
Issue Descriptions [11.327913840111378]
We introduce Defects4J-NL2Fix, a dataset of 283 Java programs from the popular Defects4J dataset augmented with high-level descriptions of bug fixes.
We empirically evaluate the performance of several state-of-the-art LLMs for the this task.
arXiv Detail & Related papers (2023-04-07T18:58:33Z) - Large Language Models are Few-shot Testers: Exploring LLM-based General
Bug Reproduction [14.444294152595429]
The number of tests added in open source repositories due to issues was about 28% of the corresponding project test suite size.
We propose LIBRO, a framework that uses Large Language Models (LLMs), which have been shown to be capable of performing code-related tasks.
Our evaluation of LIBRO shows that, on the widely studied Defects4J benchmark, LIBRO can generate failure reproducing test cases for 33% of all studied cases.
arXiv Detail & Related papers (2022-09-23T10:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.