論文の概要: From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging
- arxiv url: http://arxiv.org/abs/2409.09478v2
- Date: Mon, 21 Oct 2024 14:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:57:42.356070
- Title: From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging
- Title(参考訳): FDGからPSMAへ:PET/CT画像におけるHitchhiker's Guide to Multitracer, Multicentersion Segmentation
- Authors: Maximilian Rokuss, Balint Kovacs, Yannick Kirchhoff, Shuhan Xiao, Constantin Ulrich, Klaus H. Maier-Hein, Fabian Isensee,
- Abstract要約: 本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
- 参考スコア(独自算出の注目度): 0.9384264274298444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated lesion segmentation in PET/CT scans is crucial for improving clinical workflows and advancing cancer diagnostics. However, the task is challenging due to physiological variability, different tracers used in PET imaging, and diverse imaging protocols across medical centers. To address this, the autoPET series was created to challenge researchers to develop algorithms that generalize across diverse PET/CT environments. This paper presents our solution for the autoPET III challenge, targeting multitracer, multicenter generalization using the nnU-Net framework with the ResEncL architecture. Key techniques include misalignment data augmentation and multi-modal pretraining across CT, MR, and PET datasets to provide an initial anatomical understanding. We incorporate organ supervision as a multitask approach, enabling the model to distinguish between physiological uptake and tracer-specific patterns, which is particularly beneficial in cases where no lesions are present. Compared to the default nnU-Net, which achieved a Dice score of 57.61, or the larger ResEncL (65.31) our model significantly improved performance with a Dice score of 68.40, alongside a reduction in false positive (FPvol: 7.82) and false negative (FNvol: 10.35) volumes. These results underscore the effectiveness of combining advanced network design, augmentation, pretraining, and multitask learning for PET/CT lesion segmentation. After evaluation on the test set, our approach was awarded the first place in the model-centric category (Team LesionTracer). Code is publicly available at https://github.com/MIC-DKFZ/autopet-3-submission.
- Abstract(参考訳): PET/CTスキャンにおける病変分割の自動化は、臨床ワークフローの改善とがん診断の進展に不可欠である。
しかし、この課題は生理的多様性、PETイメージングで使用される異なるトレーサ、医療センター全体での多様なイメージングプロトコルによって困難である。
これを解決するために、AutoPETシリーズは、さまざまなPET/CT環境にまたがるアルゴリズムを開発するために研究者に挑戦するために作られた。
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックには、CT、MR、PETデータセットをまたいだ誤調整データ拡張とマルチモーダル事前トレーニングがあり、最初の解剖学的理解を提供する。
臓器管理をマルチタスクアプローチとして取り入れることで,生理的摂取とトレーサー特異的パターンの区別が可能となり,病変が存在しない場合に特に有用である。
Diceスコアが57.61、ResEncL(65.31)を達成したデフォルトのnnU-Netと比較して、Diceスコアが68.40、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少し、パフォーマンスが大幅に向上した。
これらの結果から, PET/CT領域におけるネットワーク設計, 拡張, 事前訓練, マルチタスク学習の併用の有効性が示唆された。
テストセットの評価の後、我々のアプローチはモデル中心のカテゴリ(Team LesionTracer)で第1位を獲得しました。
コードはhttps://github.com/MIC-DKFZ/autopet-3-submission.comで公開されている。
関連論文リスト
- AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
我々は,新しいU-Netフレームワーク内で3次元残留エンコーダU-Netを訓練し,自動病変分割の性能を一般化した。
腫瘍病変のセグメンテーションを増強するために,テストタイム増強や他の後処理技術を利用した。
現在、私たちのチームはAuto-PET IIIチャレンジでトップの地位にあり、Diceスコア0.9627の予備テストセットでチャレンジベースラインモデルを上回っています。
論文 参考訳(メタデータ) (2024-09-19T20:18:39Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - AutoPET Challenge III: Testing the Robustness of Generalized Dice Focal Loss trained 3D Residual UNet for FDG and PSMA Lesion Segmentation from Whole-Body PET/CT Images [0.0]
本研究では,3次元残差UNetモデルを用いて,汎用Dice Loss関数を用いてAutoPET Challenge 2024データセット上でモデルをトレーニングする。
Task-1の予備試験段階では、平均アンサンブルは平均Dice similarity Coefficient(DSC)が0.6687、平均偽陰体積(FNV)が10.9522ml、平均偽正体積(FPV)が2.9684mlに達した。
論文 参考訳(メタデータ) (2024-09-16T10:27:30Z) - Segmentation of Prostate Tumour Volumes from PET Images is a Different Ball Game [6.038532253968018]
既存の方法では、腫瘍輪郭のマニュアルアノテーション中に医師が適用した強度に基づくスケーリングを正確に考慮することができない。
我々は、新しいカスタム・フィーチャー・クリッピング・正規化手法を実装した。
この結果から, PETスキャンを新規なクリッピング技術で前処理した場合, U-Netモデルの方が優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-15T08:48:17Z) - Multi-modal Evidential Fusion Network for Trustworthy PET/CT Tumor Segmentation [5.839660501978193]
臨床環境では,PET画像とCT画像の画質は著しく変化し,ネットワークによって抽出されるモダリティ情報の不確実性が生じる。
我々は,CFL(Cross-Modal Feature Learning)とMTF(Multi-Modal Trustworthy Fusion)の2つの基本段階からなる,新しいMulti-Modal Evidential Fusion Network(MEFN)を提案する。
本モデルでは, 自動セグメンテーション結果の受け入れや拒絶の判断において, セグメンテーション結果の確実な不確実性を, 放射線技師に提供することができる。
論文 参考訳(メタデータ) (2024-06-26T13:14:24Z) - Revolutionizing Disease Diagnosis with simultaneous functional PET/MR and Deeply Integrated Brain Metabolic, Hemodynamic, and Perfusion Networks [40.986069119392944]
マルチモーダルなMiXture-of-expertsアライメント再構成とモデルであるMX-ARMを提案する。
モダリティは分離可能で交換可能であり、異なる多層パーセプトロン(「専門家の混合」)を学習可能な重みを通して動的に割り当て、異なるモダリティからそれぞれの表現を学ぶ。
論文 参考訳(メタデータ) (2024-03-29T08:47:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Hepatic vessel segmentation based on 3Dswin-transformer with inductive
biased multi-head self-attention [46.46365941681487]
Indu BIased Multi-Head Attention Vessel Net という,堅牢なエンドツーエンドのコンテナセグメンテーションネットワークを提案する。
正確な肝血管のボクセルを見つけるために,パッチワイド埋め込みよりもボクセルワイド埋め込みを導入する。
一方,絶対位置埋め込みから帰納的バイアス付き相対的位置埋め込みを学習する帰納的バイアス付きマルチヘッド自己アテンションを提案する。
論文 参考訳(メタデータ) (2021-11-05T10:17:08Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。