論文の概要: Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT
- arxiv url: http://arxiv.org/abs/2409.12155v1
- Date: Wed, 18 Sep 2024 17:16:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 16:35:11.483597
- Title: Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT
- Title(参考訳): Autopet III 課題 : PET/CTにおける病変セグメンテーションのための nnUNet への解剖学的知識の取り込み
- Authors: Hamza Kalisch, Fabian Hörst, Ken Herrmann, Jens Kleesiek, Constantin Seibold,
- Abstract要約: AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
- 参考スコア(独自算出の注目度): 4.376648893167674
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Lesion segmentation in PET/CT imaging is essential for precise tumor characterization, which supports personalized treatment planning and enhances diagnostic precision in oncology. However, accurate manual segmentation of lesions is time-consuming and prone to inter-observer variability. Given the rising demand and clinical use of PET/CT, automated segmentation methods, particularly deep-learning-based approaches, have become increasingly more relevant. The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images in a multitracer multicenter setting, addressing the clinical need for quantitative, robust, and generalizable solutions. Building on previous challenges, the third iteration of the autoPET challenge introduces a more diverse dataset featuring two different tracers (FDG and PSMA) from two clinical centers. To this extent, we developed a classifier that identifies the tracer of the given PET/CT based on the Maximum Intensity Projection of the PET scan. We trained two individual nnUNet-ensembles for each tracer where anatomical labels are included as a multi-label task to enhance the model's performance. Our final submission achieves cross-validation Dice scores of 76.90% and 61.33% for the publicly available FDG and PSMA datasets, respectively. The code is available at https://github.com/hakal104/autoPETIII/ .
- Abstract(参考訳): PET/CT画像における病変のセグメンテーションは、腫瘍の正確な特徴付けに不可欠であり、個別の治療計画をサポートし、腫瘍学における診断精度を高める。
しかし、正確な手動による病変の分割は時間を要するため、サーバ間の変動が難しくなる。
PET/CTの需要の高まりと臨床利用を考えると、自動化セグメンテーション法、特にディープラーニングベースのアプローチはますます関連性が高まっている。
AutoPET III Challengeは、PET/CT画像における腫瘍病変の自動分離をマルチトラックで進めることに焦点を当て、定量的で堅牢で一般化可能なソリューションに対する臨床ニーズに対処する。
以前の課題に基づいて、AutoPETチャレンジの第3イテレーションでは、2つの臨床センターから2つの異なるトレーサ(FDGとPSMA)を特徴とする、より多様なデータセットが導入されている。
そこで我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサーを識別する分類器を開発した。
モデルの性能を高めるために,解剖学的ラベルをマルチラベルタスクとして含むトレーサ毎に2つのnnUNetアンサンブルを訓練した。
我々の最終提出は、公開FDGデータセットとPSMAデータセットでそれぞれ76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
コードはhttps://github.com/hakal104/autoPETIII/ で公開されている。
関連論文リスト
- End-to-end Triple-domain PET Enhancement: A Hybrid Denoising-and-reconstruction Framework for Reconstructing Standard-dose PET Images from Low-dose PET Sinograms [43.13562515963306]
低線量PETシングラムから標準線量PET画像の再構成を行うために,TripleTフレームワークを提案する。
提案したTriPLETは,最先端の手法と比較して,SPET画像と実データとの類似性と信号対雑音比が最も高い再構成を行うことができる。
論文 参考訳(メタデータ) (2024-12-04T14:47:27Z) - AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
我々は,新しいU-Netフレームワーク内で3次元残留エンコーダU-Netを訓練し,自動病変分割の性能を一般化した。
腫瘍病変のセグメンテーションを増強するために,テストタイム増強や他の後処理技術を利用した。
現在、私たちのチームはAuto-PET IIIチャレンジでトップの地位にあり、Diceスコア0.9627の予備テストセットでチャレンジベースラインモデルを上回っています。
論文 参考訳(メタデータ) (2024-09-19T20:18:39Z) - From FDG to PSMA: A Hitchhiker's Guide to Multitracer, Multicenter Lesion Segmentation in PET/CT Imaging [0.9384264274298444]
本稿では,ResEncL アーキテクチャを用いた nnU-Net フレームワークを用いたマルチトラス,マルチセンタの一般化を目的とした AutoPET III チャレンジの解決策を提案する。
主なテクニックは、CT、MR、PETデータセット間での誤調整データ拡張とマルチモーダル事前トレーニングである。
Diceスコアが57.61となったデフォルトのnnU-Netと比較して、Diceスコアが68.40であり、偽陽性(FPvol: 7.82)と偽陰性(FNvol: 10.35)が減少している。
論文 参考訳(メタデータ) (2024-09-14T16:39:17Z) - AutoPET Challenge: Tumour Synthesis for Data Augmentation [26.236831356731017]
我々は,CT画像のためのDiffTumor法を適用し,病変のあるPET-CT画像を生成する。
提案手法では,AutoPETデータセット上で生成モデルをトレーニングし,トレーニングデータの拡張に使用する。
以上の結果から,拡張データセットでトレーニングしたモデルでは,Diceスコアが向上し,データ拡張アプローチの可能性が示された。
論文 参考訳(メタデータ) (2024-09-12T14:23:19Z) - Multi-modal Evidential Fusion Network for Trustworthy PET/CT Tumor Segmentation [5.839660501978193]
臨床環境では,PET画像とCT画像の画質は著しく変化し,ネットワークによって抽出されるモダリティ情報の不確実性が生じる。
我々は,CFL(Cross-Modal Feature Learning)とMTF(Multi-Modal Trustworthy Fusion)の2つの基本段階からなる,新しいMulti-Modal Evidential Fusion Network(MEFN)を提案する。
本モデルでは, 自動セグメンテーション結果の受け入れや拒絶の判断において, セグメンテーション結果の確実な不確実性を, 放射線技師に提供することができる。
論文 参考訳(メタデータ) (2024-06-26T13:14:24Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
線量レベルの認識が可能な新しい二相多段PET再構成アルゴリズムを設計する。
事前学習フェーズは、きめ細かい識別特徴と効果的な意味表現の両方を探索するために考案された。
SPET予測フェーズは、事前学習した線量レベルを利用した粗い予測ネットワークを採用して予備結果を生成する。
論文 参考訳(メタデータ) (2024-04-02T01:57:08Z) - Self-calibrated convolution towards glioma segmentation [45.74830585715129]
我々は,nnU-Netネットワークの異なる部分における自己校正畳み込みを評価し,スキップ接続における自己校正加群が,拡張腫瘍と腫瘍コアセグメンテーションの精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-02-07T19:51:13Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung
Tumor Segmentation [11.622615048002567]
マルチモーダル空間アテンションモジュール(MSAM)は腫瘍に関連する領域を強調することを学ぶ。
MSAMは一般的なバックボーンアーキテクチャやトレーニングされたエンドツーエンドに適用できる。
論文 参考訳(メタデータ) (2020-07-29T10:27:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。