論文の概要: Extract and Diffuse: Latent Integration for Improved Diffusion-based Speech and Vocal Enhancement
- arxiv url: http://arxiv.org/abs/2409.09642v1
- Date: Sun, 15 Sep 2024 07:25:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:58:08.811149
- Title: Extract and Diffuse: Latent Integration for Improved Diffusion-based Speech and Vocal Enhancement
- Title(参考訳): 抽出と拡散: 拡散に基づく音声改善と音声強調のための潜時統合
- Authors: Yudong Yang, Zhan Liu, Wenyi Yu, Guangzhi Sun, Qiuqiang Kong, Chao Zhang,
- Abstract要約: 拡散に基づく生成モデルは、近年、発声と発声の強化において顕著な成果を上げている。
識別モデルによって生成される潜在表現を統合して音声と音声の強調を改善する新しいスコアベース拡散モデルであるEx-Diffを提案する。
- 参考スコア(独自算出の注目度): 14.060387207656046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based generative models have recently achieved remarkable results in speech and vocal enhancement due to their ability to model complex speech data distributions. While these models generalize well to unseen acoustic environments, they may not achieve the same level of fidelity as the discriminative models specifically trained to enhance particular acoustic conditions. In this paper, we propose Ex-Diff, a novel score-based diffusion model that integrates the latent representations produced by a discriminative model to improve speech and vocal enhancement, which combines the strengths of both generative and discriminative models. Experimental results on the widely used MUSDB dataset show relative improvements of 3.7% in SI-SDR and 10.0% in SI-SIR compared to the baseline diffusion model for speech and vocal enhancement tasks, respectively. Additionally, case studies are provided to further illustrate and analyze the complementary nature of generative and discriminative models in this context.
- Abstract(参考訳): 拡散に基づく生成モデルは最近、複雑な音声データ分布をモデル化する能力により、音声と声の強調において顕著な成果を上げている。
これらのモデルは、目に見えない音響環境によく一般化するが、特定の音響条件を改善するために特別に訓練された識別モデルと同等の忠実度を達成できない可能性がある。
本稿では,識別モデルが生み出す潜在表現を統合した新しいスコアベース拡散モデルであるEx-Diffを提案する。
MUSDBデータセットを用いた実験結果から,SI-SDRが3.7%,SI-SIRが10.0%向上した。
さらに、ケーススタディは、この文脈における生成的および識別的モデルの相補的な性質を更に説明し、分析するために提供される。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Diffusion-Based Speech Enhancement in Matched and Mismatched Conditions
Using a Heun-Based Sampler [16.13996677489119]
拡散モデルは、最近音声強調にうまく適用された新しい生成モデルである。
先行研究は、最先端の差別モデルと比較して、不一致条件下での優れた性能を実証している。
提案システムは,複数のデータベースをトレーニングに利用することにより,一致条件と一致条件の双方において,最先端の識別モデルよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-12-05T11:40:38Z) - Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution [67.9215891673174]
離散空間に対するスコアマッチングを自然に拡張する新たな損失として,スコアエントロピーを提案する。
標準言語モデリングタスク上で,Score Entropy Discrete Diffusionモデルをテストする。
論文 参考訳(メタデータ) (2023-10-25T17:59:12Z) - DDTSE: Discriminative Diffusion Model for Target Speech Extraction [62.422291953387955]
ターゲット音声抽出(DDTSE)のための識別拡散モデルを提案する。
拡散モデルと同じ前方プロセスを適用し, 判別法と同様の復元損失を利用する。
モデルトレーニング中に推論過程をエミュレートするための2段階のトレーニング戦略を考案する。
論文 参考訳(メタデータ) (2023-09-25T04:58:38Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
拡散モデルは確率論的アプローチにより高品質なデータを生成することができる。
これは、多くの時間ステップを必要とするため、生成速度が遅くなるという欠点に悩まされる。
本稿では、逆過程の分布を学習する拡散判別器と、生成されたデータの分布を学習するスペクトログラム判別器の2つの識別器を用いた音声合成モデルを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:22:04Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
拡散モデル(英: Diffusion model)は、密度理論の確立を伴う様々なタスクにおいて印象的な結果を示す深層生成モデルのクラスである。
近年,拡散モデルの性能向上への熱意が高まっている。
論文 参考訳(メタデータ) (2022-09-02T02:59:10Z) - Conditional Diffusion Probabilistic Model for Speech Enhancement [101.4893074984667]
本稿では,観測された雑音の音声信号の特徴を拡散・逆過程に組み込む新しい音声強調アルゴリズムを提案する。
本実験では, 代表的な生成モデルと比較して, 提案手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-10T18:58:01Z) - A Study on Speech Enhancement Based on Diffusion Probabilistic Model [63.38586161802788]
雑音信号からクリーンな音声信号を復元することを目的とした拡散確率モデルに基づく音声強調モデル(DiffuSE)を提案する。
実験結果から、DiffuSEは、標準化されたVoice Bankコーパスタスクにおいて、関連する音声生成モデルに匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-07-25T19:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。