COSCO: A Sharpness-Aware Training Framework for Few-shot Multivariate Time Series Classification
- URL: http://arxiv.org/abs/2409.09645v1
- Date: Sun, 15 Sep 2024 07:41:55 GMT
- Title: COSCO: A Sharpness-Aware Training Framework for Few-shot Multivariate Time Series Classification
- Authors: Jesus Barreda, Ashley Gomez, Ruben Puga, Kaixiong Zhou, Li Zhang,
- Abstract summary: We propose a new learning framework named COSCO consisting of a sharpness-aware minimization (SAM) optimization and a Prototypical loss function.
Our experiments demonstrate our proposed method outperforms the existing baseline methods.
- Score: 19.593625378366472
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Multivariate time series classification is an important task with widespread domains of applications. Recently, deep neural networks (DNN) have achieved state-of-the-art performance in time series classification. However, they often require large expert-labeled training datasets which can be infeasible in practice. In few-shot settings, i.e. only a limited number of samples per class are available in training data, DNNs show a significant drop in testing accuracy and poor generalization ability. In this paper, we propose to address these problems from an optimization and a loss function perspective. Specifically, we propose a new learning framework named COSCO consisting of a sharpness-aware minimization (SAM) optimization and a Prototypical loss function to improve the generalization ability of DNN for multivariate time series classification problems under few-shot setting. Our experiments demonstrate our proposed method outperforms the existing baseline methods. Our source code is available at: https://github.com/JRB9/COSCO.
Related papers
- Fast Graph Sharpness-Aware Minimization for Enhancing and Accelerating Few-Shot Node Classification [53.727688136434345]
Graph Neural Networks (GNNs) have shown superior performance in node classification.
We present Fast Graph Sharpness-Aware Minimization (FGSAM) that integrates the rapid training of Multi-Layer Perceptrons with the superior performance of GNNs.
Our proposed algorithm outperforms the standard SAM with lower computational costs in FSNC tasks.
arXiv Detail & Related papers (2024-10-22T09:33:29Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Informative regularization for a multi-layer perceptron RR Lyrae
classifier under data shift [3.303002683812084]
We propose a scalable and easily adaptable approach based on an informative regularization and an ad-hoc training procedure to mitigate the shift problem.
Our method provides a new path to incorporate knowledge from characteristic features into artificial neural networks to manage the underlying data shift problem.
arXiv Detail & Related papers (2023-03-12T02:49:19Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - Class-incremental Learning using a Sequence of Partial Implicitly
Regularized Classifiers [0.0]
In class-incremental learning, the objective is to learn a number of classes sequentially without having access to the whole training data.
Our experiments on CIFAR100 dataset show that the proposed method improves the performance over SOTA by a large margin.
arXiv Detail & Related papers (2021-04-04T10:02:45Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
We propose two methods to improve calibration and performance in such scenarios.
For dataset bias due to different samplers, we propose shifted batch normalization.
Our proposed methods set new records on multiple popular long-tailed recognition benchmark datasets.
arXiv Detail & Related papers (2021-04-01T13:55:21Z) - Fine-grained Angular Contrastive Learning with Coarse Labels [72.80126601230447]
We introduce a novel 'Angular normalization' module that allows to effectively combine supervised and self-supervised contrastive pre-training.
This work will help to pave the way for future research on this new, challenging, and very practical topic of C2FS classification.
arXiv Detail & Related papers (2020-12-07T08:09:02Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
We present SRDCNN: Strongly Regularized Deep Convolution Neural Network (DCNN) based deep architecture to perform time series classification tasks.
The novelty of the proposed approach is that the network weights are regularized by both L1 and L2 norm penalties.
arXiv Detail & Related papers (2020-07-14T08:42:39Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets.
However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality.
We propose a Temporal Calibrated Regularization (TCR) in which we utilize the original labels and the predictions in the previous epoch together.
arXiv Detail & Related papers (2020-07-01T04:48:49Z) - Zero-shot and few-shot time series forecasting with ordinal regression
recurrent neural networks [17.844338213026976]
Recurrent neural networks (RNNs) are state-of-the-art in several sequential learning tasks, but they often require considerable amounts of data to generalise well.
We propose a novel RNN-based model that directly addresses this problem by learning a shared feature embedding over the space of many quantised time series.
We show how this enables our RNN framework to accurately and reliably forecast unseen time series, even when there is little to no training data available.
arXiv Detail & Related papers (2020-03-26T21:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.