論文の概要: Enhancing Lesion Segmentation in PET/CT Imaging with Deep Learning and Advanced Data Preprocessing Techniques
- arxiv url: http://arxiv.org/abs/2409.09784v1
- Date: Sun, 15 Sep 2024 16:27:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:30:41.916888
- Title: Enhancing Lesion Segmentation in PET/CT Imaging with Deep Learning and Advanced Data Preprocessing Techniques
- Title(参考訳): 深層学習と高度なデータ前処理技術を用いたPET/CT画像における病変分割の促進
- Authors: Jiayi Liu, Qiaoyi Xue, Youdan Feng, Tianming Xu, Kaixin Shen, Chuyun Shen, Yuhang Shi,
- Abstract要約: 本研究は,PET/CT画像における病変セグメンテーションの深層学習を用いた。
我々の方法論的アプローチは、モデルの堅牢性と一般化性を保証するために、ロバストな前処理とデータ拡張技術を含む。
本研究はPET/CT画像における前処理および拡張戦略の標準化に寄与することを目的としている。
- 参考スコア(独自算出の注目度): 2.4549652987344546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating global cancer burden underscores the critical need for precise diagnostic tools in oncology. This research employs deep learning to enhance lesion segmentation in PET/CT imaging, utilizing a dataset of 900 whole-body FDG-PET/CT and 600 PSMA-PET/CT studies from the AutoPET challenge III. Our methodical approach includes robust preprocessing and data augmentation techniques to ensure model robustness and generalizability. We investigate the influence of non-zero normalization and modifications to the data augmentation pipeline, such as the introduction of RandGaussianSharpen and adjustments to the Gamma transform parameter. This study aims to contribute to the standardization of preprocessing and augmentation strategies in PET/CT imaging, potentially improving the diagnostic accuracy and the personalized management of cancer patients. Our code will be open-sourced and available at https://github.com/jiayiliu-pku/DC2024.
- Abstract(参考訳): 世界的がん負担の増大は、腫瘍学における正確な診断ツールの重要性を浮き彫りにしている。
本研究は, PET/CT画像における病変セグメンテーションの深層学習を用いて, 900体FDG-PET/CTとオートPETチャレンジIIIによる600 PSMA-PET/CTのデータセットを用いた。
我々の方法論的アプローチは、モデルの堅牢性と一般化性を保証するために、ロバストな前処理とデータ拡張技術を含む。
我々は、RandGaussianSharpenの導入やガンマ変換パラメータの調整など、非ゼロ正規化とデータ拡張パイプラインへの修正の影響について検討する。
本研究の目的は,PET/CT画像における前処理および拡張戦略の標準化に寄与することであり,がん患者の診断精度とパーソナライズされた管理を改善することにある。
私たちのコードは、https://github.com/jiayiliu-pku/DC2024.comで公開されます。
関連論文リスト
- Sine Wave Normalization for Deep Learning-Based Tumor Segmentation in CT/PET Imaging [2.482413309706322]
本報告では, オートPETIIIチャレンジのために開発されたCT/PETスキャンにおける腫瘍自動分節の正規化ブロックについて述べる。
SineNormalはPETデータに周期的な正弦変換を適用して病変検出を強化する。
論文 参考訳(メタデータ) (2024-09-20T11:20:11Z) - AutoPET III Challenge: Tumor Lesion Segmentation using ResEnc-Model Ensemble [1.3467243219009812]
我々は,新しいU-Netフレームワーク内で3次元残留エンコーダU-Netを訓練し,自動病変分割の性能を一般化した。
腫瘍病変のセグメンテーションを増強するために,テストタイム増強や他の後処理技術を利用した。
現在、私たちのチームはAuto-PET IIIチャレンジでトップの地位にあり、Diceスコア0.9627の予備テストセットでチャレンジベースラインモデルを上回っています。
論文 参考訳(メタデータ) (2024-09-19T20:18:39Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
AutoPET III ChallengeはPET/CT画像における腫瘍病変の自動切除の進歩に焦点を当てている。
我々は,PETスキャンの最大強度投影に基づいて,与えられたPET/CTのトレーサを識別する分類器を開発した。
我々の最終提出書は、公開可能なFDGおよびPSMAデータセットに対して76.90%と61.33%のクロスバリデーションDiceスコアを達成している。
論文 参考訳(メタデータ) (2024-09-18T17:16:57Z) - Data-Centric Strategies for Overcoming PET/CT Heterogeneity: Insights from the AutoPET III Lesion Segmentation Challenge [0.9854844969061186]
第3のAutoPETチャレンジは、今年新たにデータ中心のタスクを導入した。
この課題は、PET/CT画像の転移性病変セグメンテーションの改善に焦点を移した。
PET/CT画像の特徴に合わせてセグメンテーション性能を向上させる手法を開発した。
論文 参考訳(メタデータ) (2024-09-16T09:32:04Z) - AutoPET Challenge: Tumour Synthesis for Data Augmentation [26.236831356731017]
我々は,CT画像のためのDiffTumor法を適用し,病変のあるPET-CT画像を生成する。
提案手法では,AutoPETデータセット上で生成モデルをトレーニングし,トレーニングデータの拡張に使用する。
以上の結果から,拡張データセットでトレーニングしたモデルでは,Diceスコアが向上し,データ拡張アプローチの可能性が示された。
論文 参考訳(メタデータ) (2024-09-12T14:23:19Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Score-Based Generative Models for PET Image Reconstruction [38.72868748574543]
本稿では,PETによるスコアベース生成モデルの適応について提案する。
提案するフレームワークは, 2D PET と 3D PET の両方に対して開発された。
また,磁気共鳴画像を用いたガイド再構成の拡張も提供する。
論文 参考訳(メタデータ) (2023-08-27T19:43:43Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) は, アンカークエリの改善と前景のサンプリング損失による各病変の分割と分類を行う。
PLANは95%と96%の患者レベルの感度と特異性を達成している。
造影CTでは, 病変レベルの検出精度, リコール, 分類精度は92%, 89%, 86%であり, CNNやトランスフォーマーよりも優れていた。
論文 参考訳(メタデータ) (2023-07-17T06:21:45Z) - CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung
Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans [36.093580055848186]
肺腺癌(LAUC)は近年最も多い疾患である。
肺結節の侵襲性に関するタイムリーかつ正確な知識は適切な治療計画をもたらし、不必要な手術や遅発手術のリスクを低減させる。
LAUCの浸潤度を評価し,予測するための主要な画像モダリティは胸部CTである。
本稿では、LAUCを分類するために、予測トランスフォーマーベースのフレームワーク「CAE-Transformer」を開発した。
論文 参考訳(メタデータ) (2021-10-17T04:37:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。