論文の概要: Abnormal Event Detection In Videos Using Deep Embedding
- arxiv url: http://arxiv.org/abs/2409.09804v1
- Date: Sun, 15 Sep 2024 17:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:20:56.618927
- Title: Abnormal Event Detection In Videos Using Deep Embedding
- Title(参考訳): ディープ埋め込みによるビデオ中の異常事象検出
- Authors: Darshan Venkatrayappa,
- Abstract要約: 監視ビデオにおける異常事象の検出や異常検出は、現在、起こりうる事象の多様性のために課題となっている。
本稿では、ディープニューラルネットワークの目的を協調的に最適化することを目的とした、ビデオ異常検出のための教師なしアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abnormal event detection or anomaly detection in surveillance videos is currently a challenge because of the diversity of possible events. Due to the lack of anomalous events at training time, anomaly detection requires the design of learning methods without supervision. In this work we propose an unsupervised approach for video anomaly detection with the aim to jointly optimize the objectives of the deep neural network and the anomaly detection task using a hybrid architecture. Initially, a convolutional autoencoder is pre-trained in an unsupervised manner with a fusion of depth, motion and appearance features. In the second step, we utilize the encoder part of the pre-trained autoencoder and extract the embeddings of the fused input. Now, we jointly train/ fine tune the encoder to map the embeddings to a hypercenter. Thus, embeddings of normal data fall near the hypercenter, whereas embeddings of anomalous data fall far away from the hypercenter.
- Abstract(参考訳): 監視ビデオにおける異常事象の検出や異常検出は、現在、起こりうる事象の多様性のために課題となっている。
トレーニング時に異常なイベントが欠如しているため、異常検出には教師なしの学習方法の設計が必要である。
本研究では,ディープニューラルネットワークの目的とハイブリッドアーキテクチャを用いた異常検出タスクを協調的に最適化することを目的とした,ビデオ異常検出のための教師なしアプローチを提案する。
当初、畳み込みオートエンコーダは、深さ、動き、外観の融合を伴う教師なしの方法で事前訓練される。
2番目のステップでは、事前訓練されたオートエンコーダのエンコーダ部を利用して、融合した入力の埋め込みを抽出する。
現在、エンコーダをトレーニング/微調整して、埋め込みをハイパーセンタにマップしています。
したがって、通常のデータの埋め込みはハイパーセンタに近づき、異常データの埋め込みはハイパーセンタから遠く離れている。
関連論文リスト
- Video Anomaly Detection using GAN [0.0]
この論文は、このユースケースに対する解決策を提供することを目的としており、監視システム記録の異常な活動に目を通すために人的資源が不要になるようにする。
我々は,新しいGANに基づく異常検出モデルを開発した。
論文 参考訳(メタデータ) (2023-11-23T16:41:30Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
異常検出は、正常なデータの分布に適合しないサンプルを特定することである。
本研究では,2つの競合するコンポーネント,Adversarial Distorter と Autoencoder で構成される対角的フレームワークを設計した。
提案手法は,画像およびビデオデータセットの異常検出において,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-03T19:32:00Z) - Visual anomaly detection in video by variational autoencoder [0.0]
オートエンコーダ(autoencoder)は、ボトルネック層と呼ばれる入力の潜在表現を使って入力を再現するように訓練されたニューラルネットワークである。
本稿では,畳み込み型LSTMオートエンコーダと畳み込み型LSTMオートエンコーダの性能の比較を行った。
論文 参考訳(メタデータ) (2022-03-08T06:22:04Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
本稿では,複数の仮想シーンで構成された教師付きオープンセット・ベンチマークを提案する。
既存のデータセットとは異なり、トレーニング時に画素レベルでアノテートされた異常事象を導入する。
UBnormalは最先端の異常検出フレームワークの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2021-11-16T17:28:46Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning [25.787860059872106]
監視ビデオの異常検出は、異常なビデオコンテンツと持続時間の多様性のために難しい作業です。
本稿では,トレーニング段階でビデオレベルラベルのみを必要とする異常回帰ネット(ar-net)と呼ばれる異常検出フレームワークを提案する。
本手法は,上海テクデータセットにおける映像異常検出に新たな最先端結果を与える。
論文 参考訳(メタデータ) (2021-04-15T06:41:23Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。