Mode hitching in traveling-wave optical parametric amplification
- URL: http://arxiv.org/abs/2409.09813v1
- Date: Sun, 15 Sep 2024 18:24:04 GMT
- Title: Mode hitching in traveling-wave optical parametric amplification
- Authors: Joseph Kelly, Eleanor Fradgley, Vincent Boyer,
- Abstract summary: This study focuses on the classical transverse dynamics of the signal and idler beams when they propagate in a generic thick OPA at a nominally small angle.
We show that the beams tend to copropagate while maintaining a fixed separation, a phenomenon that we term hitching.
Results have implications for the generation of multi-spatial-mode squeezed light for quantum imaging applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical parametric amplifiers (OPAs) in traveling wave configuration can generate localized spatial quantum correlations between a signal and an idler beam, a useful resource for quantum imaging. This study focuses on the classical transverse dynamics of the signal and idler beams when they propagate in a generic thick OPA at a nominally small angle. It shows that the beams tend to copropagate while maintaining a fixed separation, a phenomenon that we term hitching. We provide a model for hitching, validated by a numerical simulation, and we provide an experimental demonstration using four-wave mixing (4WM) in a hot atomic vapor. It shows that the OPA gain is the primary influence on the final hitching distance. These results have implications for the generation of multi-spatial-mode squeezed light for quantum imaging applications, where the exact spatial correspondence between the quantum fluctuations of the signal and the idler is of prime importance.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Shaping entangled photons through thick scattering media using an advanced wave beacon [0.0]
Entangled photons propagate through a complex medium such as a biological tissue or a turbulent atmosphere.
Using wavefront shaping to compensate for the scattering and retrieve the two-photon correlations is challenging due to the low signal-to-noise ratio.
We propose and demonstrate a new feedback mechanism that is inspired by Klyshko's advanced wave picture.
arXiv Detail & Related papers (2024-03-27T07:56:13Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Reconstructing the multiphoton spatial wave function with coincidence
wavefront sensing [7.600005876710375]
We introduce the coincidence wavefront sensing (CWS) method to reconstruct the phase of the multiphoton transverse spatial wave function.
Numerical simulations of two-photon cases using the weak measurement wavefront sensor are performed to test its correctness.
arXiv Detail & Related papers (2023-04-01T05:51:25Z) - Controlling Frequency-Domain Hong-Ou-Mandel Interference via
Electromagnetically Induced Transparency [5.467400475482669]
Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclassical nature of single photons.
In this study, we investigate an electromagnetically induced transparency-based double-$Lambda$ four-wave mixing system.
arXiv Detail & Related papers (2023-02-14T08:22:09Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Spatial entanglement and state engineering via four-photon
Hong-Ou-Mandel interference [0.0]
Entangled systems with a large number of photons provide a platform for streaming technologies based on photonics.
We present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference.
The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states.
arXiv Detail & Related papers (2020-07-20T12:51:01Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.