論文の概要: Causal Inference with Large Language Model: A Survey
- arxiv url: http://arxiv.org/abs/2409.09822v2
- Date: Wed, 16 Oct 2024 08:20:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 20:46:36.411893
- Title: Causal Inference with Large Language Model: A Survey
- Title(参考訳): 大規模言語モデルによる因果推論:調査
- Authors: Jing Ma,
- Abstract要約: 因果推論は医学や経済学といった様々な分野において重要な課題となっている。
自然言語処理(NLP)の最近の進歩は、従来の因果推論タスクに有望な機会をもたらした。
- 参考スコア(独自算出の注目度): 5.651037052334014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference has been a pivotal challenge across diverse domains such as medicine and economics, demanding a complicated integration of human knowledge, mathematical reasoning, and data mining capabilities. Recent advancements in natural language processing (NLP), particularly with the advent of large language models (LLMs), have introduced promising opportunities for traditional causal inference tasks. This paper reviews recent progress in applying LLMs to causal inference, encompassing various tasks spanning different levels of causation. We summarize the main causal problems and approaches, and present a comparison of their evaluation results in different causal scenarios. Furthermore, we discuss key findings and outline directions for future research, underscoring the potential implications of integrating LLMs in advancing causal inference methodologies.
- Abstract(参考訳): 因果推論は医学や経済学などの様々な分野において重要な課題であり、人間の知識、数学的推論、データマイニング能力の複雑な統合を要求している。
自然言語処理(NLP)の最近の進歩、特に大規模言語モデル(LLM)の出現により、従来の因果推論タスクに有望な機会が導入された。
本稿では,LLMを因果推論に適用する最近の進歩を概説する。
主な因果問題とアプローチを要約し、その評価結果を異なる因果シナリオで比較する。
さらに、今後の研究の要点と方向性について論じ、因果推論手法の進歩におけるLCMの統合の可能性について考察する。
関連論文リスト
- Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
因果推論は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
大規模言語モデル(LLM)は出力に対して有理性を生成することができるが、因果推論を確実に行う能力は未だ不明である。
論文 参考訳(メタデータ) (2024-10-22T04:18:19Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
本研究では,因果発見タスクにおけるLarge Language Models(LLM)の性能に影響を与える要因について検討する。
因果関係の頻度が高いことは、より良いモデル性能と相関し、トレーニング中に因果関係の情報に広範囲に暴露することで、因果関係の発見能力を高めることを示唆している。
論文 参考訳(メタデータ) (2024-07-29T01:45:05Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は、システムの異なる部分への介入の下で因果効果を推定することができる。
LLMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを実証分析して評価する。
我々は、様々な因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成し、介入に基づく推論の研究を可能にする。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - Large Language Models and Causal Inference in Collaboration: A Comprehensive Survey [46.4375135354838]
因果推論は、自然言語処理(NLP)モデルの予測精度、公正性、堅牢性、説明可能性を高める可能性を示している。
生成型Large Language Models(LLM)の出現は、様々なNLPドメインに大きな影響を与えている。
論文 参考訳(メタデータ) (2024-03-14T17:47:20Z) - Bridging Causal Discovery and Large Language Models: A Comprehensive
Survey of Integrative Approaches and Future Directions [10.226735765284852]
因果発見(CD)とLarge Language Models(LLM)は、人工知能に重要な意味を持つ2つの新しい研究分野を表す。
本稿では,CDタスクへのLPM(GPT4など)の統合に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2024-02-16T20:48:53Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [60.244412212130264]
Causal-Consistency Chain-of-Thoughtは、基礎モデルの忠実さと因果性を強化するために、マルチエージェントコラボレーションを活用する。
我々のフレームワークは、広範囲かつ包括的な評価を通じて、最先端の手法よりも大きな優位性を示す。
論文 参考訳(メタデータ) (2023-08-23T04:59:21Z) - Towards Reasoning in Large Language Models: A Survey [11.35055307348939]
大規模な言語モデル(LLM)がどの程度推論できるのかは、まだ明らかになっていない。
本稿では,LLMにおける推論に関する知識の現状を概観する。
論文 参考訳(メタデータ) (2022-12-20T16:29:03Z) - Causal Inference in Natural Language Processing: Estimation, Prediction,
Interpretation and Beyond [38.055142444836925]
学術分野にまたがる研究を集約し、より広い自然言語処理の現場に配置する。
本稿では,因果効果を推定する統計的課題を紹介し,テキストを結果,治療,あるいはコンバウンディングに対処するための手段として用いるような設定を包含する。
さらに, NLPモデルの性能, 堅牢性, 公正性, 解釈可能性を向上させるために, 因果推論の潜在的利用について検討する。
論文 参考訳(メタデータ) (2021-09-02T05:40:08Z) - Towards Causal Representation Learning [96.110881654479]
機械学習とグラフィカル因果関係の2つの分野が生まれ、別々に発展した。
現在、他分野の進歩の恩恵を受けるために、クロスポリン化と両方の分野への関心が高まっている。
論文 参考訳(メタデータ) (2021-02-22T15:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。