Generating Synthetic Free-text Medical Records with Low Re-identification Risk using Masked Language Modeling
- URL: http://arxiv.org/abs/2409.09831v3
- Date: Wed, 29 Jan 2025 23:10:09 GMT
- Title: Generating Synthetic Free-text Medical Records with Low Re-identification Risk using Masked Language Modeling
- Authors: Samuel Belkadi, Libo Ren, Nicolo Micheletti, Lifeng Han, Goran Nenadic,
- Abstract summary: We present a system for generating synthetic free-text medical records using Masked Language Modeling.
The system preserves critical medical information while introducing diversity in the generations and minimising re-identification risk.
The results demonstrate high-quality synthetic data with a HIPAA-compliant PHI recall rate of 96% and a re-identification risk of 3.5%.
- Score: 6.193782515824411
- License:
- Abstract: The vast amount of available medical records has the potential to improve healthcare and biomedical research. However, privacy restrictions make these data accessible for internal use only. Recent works have addressed this problem by generating synthetic data using Causal Language Modeling. Unfortunately, by taking this approach, it is often impossible to guarantee patient privacy while offering the ability to control the diversity of generations without increasing the cost of generating such data. In contrast, we present a system for generating synthetic free-text medical records using Masked Language Modeling. The system preserves critical medical information while introducing diversity in the generations and minimising re-identification risk. The system's size is about 120M parameters, minimising inference cost. The results demonstrate high-quality synthetic data with a HIPAA-compliant PHI recall rate of 96% and a re-identification risk of 3.5%. Moreover, downstream evaluations show that the generated data can effectively train a model with performance comparable to real data.
Related papers
- Robust Privacy Amidst Innovation with Large Language Models Through a Critical Assessment of the Risks [7.928574214440075]
This study examines integrating EHRs and NLP with large language models (LLMs) to improve healthcare data management and patient care.
It focuses on using advanced models to create secure, HIPAA-compliant synthetic patient notes for biomedical research.
arXiv Detail & Related papers (2024-07-23T04:20:14Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRs are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research.
Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases.
To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs.
arXiv Detail & Related papers (2024-04-18T16:50:46Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
This study assesses the capability of the Llama 2 LLM to create synthetic medical records that accurately reflect real patient information.
We focus on generating synthetic narratives for the History of Present Illness section, utilising data from the MIMIC-IV dataset for comparison.
Our findings suggest that this chain-of-thought prompted approach allows the zero-shot model to achieve results on par with those of fine-tuned models, based on Rouge metrics evaluation.
arXiv Detail & Related papers (2024-03-13T16:17:09Z) - Protect and Extend -- Using GANs for Synthetic Data Generation of
Time-Series Medical Records [1.9749268648715583]
This research compares state-of-the-art GAN-based models for synthetic data generation to generate time-series synthetic medical records of dementia patients.
Our experiments indicate the superiority of the privacy-preserving GAN (PPGAN) model over other models regarding privacy preservation.
arXiv Detail & Related papers (2024-02-21T10:24:34Z) - Reliable Generation of Privacy-preserving Synthetic Electronic Health Record Time Series via Diffusion Models [4.240899165468488]
Electronic Health Records (EHRs) are rich sources of patient-level data, offering valuable resources for medical data analysis.
However, privacy concerns often restrict access to EHRs, hindering downstream analysis.
This study aims to overcome these challenges by generating realistic and privacy-preserving synthetic EHR time series efficiently.
arXiv Detail & Related papers (2023-10-23T18:56:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
generative adversarial network (GAN) entitled EHR-M-GAN which synthesizes textitmixed-type timeseries EHR data.
We have validated EHR-M-GAN on three publicly-available intensive care unit databases with records from a total of 141,488 unique patients.
arXiv Detail & Related papers (2021-12-22T17:17:34Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
The NeurIPS 2020 Hide-and-Seek Privacy Challenge is a novel two-tracked competition to accelerate progress in tackling both problems.
In our head-to-head format, participants in the synthetic data generation track (i.e. "hiders") and the patient re-identification track (i.e. "seekers") are directly pitted against each other by way of a new, high-quality intensive care time-series dataset.
arXiv Detail & Related papers (2020-07-23T15:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.