Rapid Adaptation of Earth Observation Foundation Models for Segmentation
- URL: http://arxiv.org/abs/2409.09907v1
- Date: Mon, 16 Sep 2024 00:42:45 GMT
- Title: Rapid Adaptation of Earth Observation Foundation Models for Segmentation
- Authors: Karthick Panner Selvam, Raul Ramos-Pollan, Freddie Kalaitzis,
- Abstract summary: Low-Rank Adaptation (LoRA) can be used to fine-tune Earth Observation (EO) foundation models for flood segmentation.
LoRA improves F1 score by 6.66 points and IoU by 0.11 compared to a frozen encoder baseline.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the efficacy of Low-Rank Adaptation (LoRA) in fine-tuning Earth Observation (EO) foundation models for flood segmentation. We hypothesize that LoRA, a parameter-efficient technique, can significantly accelerate the adaptation of large-scale EO models to this critical task while maintaining high performance. We apply LoRA to fine-tune a state-of-the-art EO foundation model pre-trained on diverse satellite imagery, using a curated dataset of flood events. Our results demonstrate that LoRA-based fine-tuning (r-256) improves F1 score by 6.66 points and IoU by 0.11 compared to a frozen encoder baseline, while significantly reducing computational costs. Notably, LoRA outperforms full fine-tuning, which proves computationally infeasible on our hardware. We further assess generalization through out-of-distribution (OOD) testing on a geographically distinct flood event. While LoRA configurations show improved OOD performance over the baseline. This work contributes to research on efficient adaptation of foundation models for specialized EO tasks, with implications for rapid response systems in disaster management. Our findings demonstrate LoRA's potential for enabling faster deployment of accurate flood segmentation models in resource-constrained, time-critical scenarios.
Related papers
- Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models [21.953204885495573]
This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
arXiv Detail & Related papers (2024-10-30T15:23:44Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
This paper focuses on the concept of task-specific directions (TSDs)-critical for transitioning large models from pretrained states to task-specific enhancements in PEFT.
We introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks.
arXiv Detail & Related papers (2024-09-02T08:10:51Z) - Low-Rank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting [5.354055742467354]
Low-Rank Adaptation (LoRA) is a technique for fine-tuning large pre-trained or foundational models across different modalities and tasks.
This paper examines the impact of LoRA on contemporary time series foundational models: Lag-Llama, MOIRAI, and Chronos.
arXiv Detail & Related papers (2024-05-16T16:05:33Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
We propose a LoRA Dropout mechanism for the LoRA-based methods.
We show that appropriate sparsity would help tighten the gap between empirical and generalization risks.
arXiv Detail & Related papers (2024-04-15T09:32:12Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
We extend the methodology of low-rank adaptation (LoRA) to an innovative approach we call allocating low-rank adaptation (ALoRA)
First, we propose a novel method, AB-LoRA, that can effectively estimate the importance score of each LoRA rank.
Second, guided by AB-LoRA, we gradually prune abundant and negatively impacting LoRA ranks and allocate the pruned LoRA budgets to important Transformer modules needing higher ranks.
arXiv Detail & Related papers (2024-03-24T15:09:55Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - Exploring the impact of low-rank adaptation on the performance,
efficiency, and regularization of RLHF [47.960563851948514]
We investigate an efficient implementation of RLHF using low-rank adaptation (LoRA)
Our implementation achieves better performance than the publicly-released AlpacaFarm checkpoint with full model fine-tuning.
We release our code and pretrained checkpoints to facilitate future research on more efficient RLHF.
arXiv Detail & Related papers (2023-09-16T17:31:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.