Low-rank Adaptation-based All-Weather Removal for Autonomous Navigation
- URL: http://arxiv.org/abs/2411.17814v1
- Date: Tue, 26 Nov 2024 19:01:11 GMT
- Title: Low-rank Adaptation-based All-Weather Removal for Autonomous Navigation
- Authors: Sudarshan Rajagopalan, Vishal M. Patel,
- Abstract summary: All-weather image restoration (AWIR) is crucial for reliable autonomous navigation under adverse weather conditions.
AWIR models are trained to address a specific set of weather conditions such as fog, rain, and snow.
We propose using Low-Rank Adaptation (LoRA) to efficiently adapt a pre-trained all-weather model to novel weather restoration tasks.
- Score: 29.309503214127016
- License:
- Abstract: All-weather image restoration (AWIR) is crucial for reliable autonomous navigation under adverse weather conditions. AWIR models are trained to address a specific set of weather conditions such as fog, rain, and snow. But this causes them to often struggle with out-of-distribution (OoD) samples or unseen degradations which limits their effectiveness for real-world autonomous navigation. To overcome this issue, existing models must either be retrained or fine-tuned, both of which are inefficient and impractical, with retraining needing access to large datasets, and fine-tuning involving many parameters. In this paper, we propose using Low-Rank Adaptation (LoRA) to efficiently adapt a pre-trained all-weather model to novel weather restoration tasks. Furthermore, we observe that LoRA lowers the performance of the adapted model on the pre-trained restoration tasks. To address this issue, we introduce a LoRA-based fine-tuning method called LoRA-Align (LoRA-A) which seeks to align the singular vectors of the fine-tuned and pre-trained weight matrices using Singular Value Decomposition (SVD). This alignment helps preserve the model's knowledge of its original tasks while adapting it to unseen tasks. We show that images restored with LoRA and LoRA-A can be effectively used for computer vision tasks in autonomous navigation, such as semantic segmentation and depth estimation.
Related papers
- LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization [12.504723188498]
Large Language Models (LLMs) have achieved remarkable success in natural language processing.
Low-Rank Adaptation (LoRA) has emerged as a practical solution by approximating parameter updates with low-rank matrices.
LoRA-GGPO is a novel method that leverages gradient and weight norms to generate targeted perturbations.
arXiv Detail & Related papers (2025-02-20T13:14:41Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - Dual Low-Rank Adaptation for Continual Learning with Pre-Trained Models [38.97142043836567]
Continual learning (CL) aims to enable vision transformers (ViTs) to learn new tasks over time.
catastrophic forgetting remains a persistent challenge.
We propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA)
arXiv Detail & Related papers (2024-11-01T14:28:39Z) - LoRA vs Full Fine-tuning: An Illusion of Equivalence [76.11938177294178]
We study how different fine-tuning methods change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties.
We find that full fine-tuning and LoRA yield weight matrices whose singular value decompositions exhibit very different structure.
We conclude by examining why intruder dimensions appear in LoRA fine-tuned models, why they are undesirable, and how their effects can be minimized.
arXiv Detail & Related papers (2024-10-28T17:14:01Z) - LoRA-IR: Taming Low-Rank Experts for Efficient All-in-One Image Restoration [62.3751291442432]
We propose LoRA-IR, a flexible framework that dynamically leverages compact low-rank experts to facilitate efficient all-in-one image restoration.
LoRA-IR consists of two training stages: degradation-guided pre-training and parameter-efficient fine-tuning.
Experiments demonstrate that LoRA-IR achieves SOTA performance across 14 IR tasks and 29 benchmarks, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-20T13:00:24Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Rapid Adaptation of Earth Observation Foundation Models for Segmentation [1.3654846342364308]
Low-Rank Adaptation (LoRA) can be used to fine-tune Earth Observation (EO) foundation models for flood segmentation.
LoRA improves F1 score by 6.66 points and IoU by 0.11 compared to a frozen encoder baseline.
arXiv Detail & Related papers (2024-09-16T00:42:45Z) - Continual Forgetting for Pre-trained Vision Models [70.51165239179052]
In real-world scenarios, selective information is expected to be continuously removed from a pre-trained model.
We propose Group Sparse LoRA (GS-LoRA) for efficient and effective deleting.
We conduct extensive experiments on face recognition, object detection and image classification and demonstrate that GS-LoRA manages to forget specific classes with minimal impact on other classes.
arXiv Detail & Related papers (2024-03-18T07:33:56Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.