Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system
- URL: http://arxiv.org/abs/2409.09989v1
- Date: Mon, 16 Sep 2024 04:44:52 GMT
- Title: Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system
- Authors: Shailja Gupta, Rajesh Ranjan, Surya Narayan Singh,
- Abstract summary: This study examines the historical development of sentiment analysis, highlighting the transition from lexicon-based and pattern-based approaches to more sophisticated machine learning and deep learning models.
The paper reviews state-of-the-art approaches, identifies emerging trends, and outlines future research directions to advance the field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper provides a comprehensive survey of sentiment analysis within the context of artificial intelligence (AI) and large language models (LLMs). Sentiment analysis, a critical aspect of natural language processing (NLP), has evolved significantly from traditional rule-based methods to advanced deep learning techniques. This study examines the historical development of sentiment analysis, highlighting the transition from lexicon-based and pattern-based approaches to more sophisticated machine learning and deep learning models. Key challenges are discussed, including handling bilingual texts, detecting sarcasm, and addressing biases. The paper reviews state-of-the-art approaches, identifies emerging trends, and outlines future research directions to advance the field. By synthesizing current methodologies and exploring future opportunities, this survey aims to understand sentiment analysis in the AI and LLM context thoroughly.
Related papers
- LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.
We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.
We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.
General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.
Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Survey on Vision-Language-Action Models [0.2636873872510828]
This work does not represent original research, but highlights how AI can help automate literature reviews.
Future research will focus on developing a structured framework for AI-assisted literature reviews.
arXiv Detail & Related papers (2025-02-07T11:56:46Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.
This study systematically maps the literature on the use of LLMs for qualitative research.
Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - Hierarchical Narrative Analysis: Unraveling Perceptions of Generative AI [1.1874952582465599]
We propose a method that leverages large language models (LLMs) to extract and organize these structures into a hierarchical framework.
We validate this approach by analyzing public opinions on generative AI collected by Japan's Agency for Cultural Affairs.
Our analysis provides clearer visualization of the factors influencing divergent opinions on generative AI, offering deeper insights into the structures of agreement and disagreement.
arXiv Detail & Related papers (2024-09-17T09:56:12Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.
logical reasoning that can directly support are quite limited in learning, approximation and prediction.
One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Large Language Models Meet Text-Centric Multimodal Sentiment Analysis: A Survey [66.166184609616]
ChatGPT has opened up immense potential for applying large language models (LLMs) to text-centric multimodal tasks.
It is still unclear how existing LLMs can adapt better to text-centric multimodal sentiment analysis tasks.
arXiv Detail & Related papers (2024-06-12T10:36:27Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
This paper studies the behaviour of the cutting-edge Transformer-based language models on opinion mining.
Our comparative study shows leads and paves the way for production engineers regarding the approach to focus on.
arXiv Detail & Related papers (2023-08-07T01:10:50Z) - A Review of the Trends and Challenges in Adopting Natural Language
Processing Methods for Education Feedback Analysis [4.040584701067227]
Machine learning, deep learning, and natural language processing (NLP) are subsets of AI to tackle different areas of data processing and modelling.
This review article presents an overview of AI impact on education outlining with current opportunities.
arXiv Detail & Related papers (2023-01-20T23:38:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.