論文の概要: Learning Latent Wireless Dynamics from Channel State Information
- arxiv url: http://arxiv.org/abs/2409.10045v1
- Date: Mon, 16 Sep 2024 07:15:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:30:58.854919
- Title: Learning Latent Wireless Dynamics from Channel State Information
- Title(参考訳): チャネル状態情報を用いた潜時無線ダイナミクスの学習
- Authors: Charbel Bou Chaaya, Abanoub M. Girgis, Mehdi Bennis,
- Abstract要約: 本稿では,潜在空間における無線伝搬環境のダイナミクスをモデル化し,予測するための,データ駆動型機械学習(ML)技術を提案する。
本稿では, 測定データに対する数値的な評価を行い, 提案したJEPAがベンチマークよりも2倍の精度向上を示した。
- 参考スコア(独自算出の注目度): 31.080933663717257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a novel data-driven machine learning (ML) technique to model and predict the dynamics of the wireless propagation environment in latent space. Leveraging the idea of channel charting, which learns compressed representations of high-dimensional channel state information (CSI), we incorporate a predictive component to capture the dynamics of the wireless system. Hence, we jointly learn a channel encoder that maps the estimated CSI to an appropriate latent space, and a predictor that models the relationships between such representations. Accordingly, our problem boils down to training a joint-embedding predictive architecture (JEPA) that simulates the latent dynamics of a wireless network from CSI. We present numerical evaluations on measured data and show that the proposed JEPA displays a two-fold increase in accuracy over benchmarks, for longer look-ahead prediction tasks.
- Abstract(参考訳): 本研究では,潜在空間における無線伝搬環境のダイナミクスをモデル化し,予測するための,データ駆動型機械学習(ML)技術を提案する。
高次元チャネル状態情報(CSI)の圧縮表現を学習するチャネルチャートのアイデアを活用し、予測成分を組み込んで無線システムのダイナミクスを捉える。
そこで我々は,推定したCSIを適切な潜在空間にマッピングするチャネルエンコーダと,それらの表現間の関係をモデル化する予測器を共同で学習する。
したがって、我々は、CSIから無線ネットワークの潜伏ダイナミクスをシミュレートするJEPA(Joint-embedding predictive Architecture)のトレーニングに着目する。
本稿では,測定データに対する数値的な評価を行い,提案したJEPAがベンチマークよりも2倍の精度向上を示した。
関連論文リスト
- Context-Conditioned Spatio-Temporal Predictive Learning for Reliable V2V Channel Prediction [25.688521281119037]
下流タスクの最適化には,V2Vチャネル状態情報(CSI)予測が不可欠である。
従来の予測手法は、時間、帯域幅、アンテナ(TX、RX)空間の予測を含む4次元(4D)CSIに重点を置いている。
本研究では,4次元CSIデータ内の依存関係をキャプチャするコンテキスト条件付き時間予測学習手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T04:15:36Z) - Contrastive Representation Learning for Dynamic Link Prediction in Temporal Networks [1.9389881806157312]
本稿では,時間ネットワークの表現を学習するための自己教師付き手法を提案する。
本稿では、時間的ネットワークの時間的参照経路を介して情報の流れをモデル化するための、繰り返しメッセージパッシングニューラルネットワークアーキテクチャを提案する。
提案手法は、Enron、COLAB、Facebookのデータセットでテストされる。
論文 参考訳(メタデータ) (2024-08-22T22:50:46Z) - RSSI Estimation for Constrained Indoor Wireless Networks using ANN [0.0]
本研究では、ニューラルネットワーク(ANN)を用いた2つの異なるLP-IoT無線チャネル推定モデルを確立する。
いずれのモデルも、LP-IoT無線チャネルにおける推定誤差を低くすることで、LP-IoT通信を強化するために構築されている。
その結果,提案手法はチャネル推定において顕著な精度を達成し,MSEが8.29%,Sequenceモデルが9.46%,MSEが9.76%,MSEが8.29%向上した。
論文 参考訳(メタデータ) (2024-04-10T02:48:13Z) - Dynamic Encoding and Decoding of Information for Split Learning in
Mobile-Edge Computing: Leveraging Information Bottleneck Theory [1.1151919978983582]
Split Learning(スプリットラーニング)は、MLモデルを2つの部分(エンコーダとデコーダ)に分割する、プライバシ保護の分散学習パラダイムである。
モバイルエッジコンピューティングでは、エンコーダがユーザ機器(UE)に、デコーダがエッジネットワークに、分割学習によってネットワーク機能を訓練することができる。
本稿では,送信リソース消費の動的バランスと,共有潜在表現の情報化を両立させるためのフレームワークとトレーニング機構を提案する。
論文 参考訳(メタデータ) (2023-09-06T07:04:37Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
無線センシングに基づくヒューマンモーション認識(hmr)は,シーン理解のための低コスト手法である。
現在のHMRシステムは、レーダー信号を分類するためにサポートベクターマシン(SVM)と畳み込みニューラルネットワーク(CNN)を採用している。
本稿では,残差マッピング技術を利用してHMR性能を向上させるディープ・スペクトログラム・ネットワーク(DSN)を提案する。
論文 参考訳(メタデータ) (2021-04-21T06:33:01Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。