論文の概要: LLM-DER:A Named Entity Recognition Method Based on Large Language Models for Chinese Coal Chemical Domain
- arxiv url: http://arxiv.org/abs/2409.10077v1
- Date: Mon, 16 Sep 2024 08:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:21:11.826402
- Title: LLM-DER:A Named Entity Recognition Method Based on Large Language Models for Chinese Coal Chemical Domain
- Title(参考訳): LLM-DER:中国石炭化学ドメインの大規模言語モデルに基づく名前付きエンティティ認識手法
- Authors: Le Xiao, Yunfei Xu, Jing Zhao,
- Abstract要約: 中国語におけるドメイン固有エンティティ認識問題に対して,Large Language Models (LLMs) ベースのエンティティ認識フレームワーク LLM-DER を提案する。
LLMs-DERは、LCMを通してエンティティタイプを含む関係のリストを生成し、誤認識されたエンティティを削除するための妥当性と一貫性の評価方法を設計する。
本稿では,Resumeデータセットと自己構築石炭化学データセットCoalを用いた実験結果から,LLM-DERがドメイン固有エンティティ認識において優れた性能を示した。
- 参考スコア(独自算出の注目度): 4.639851504108679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain-specific Named Entity Recognition (NER), whose goal is to recognize domain-specific entities and their categories, provides an important support for constructing domain knowledge graphs. Currently, deep learning-based methods are widely used and effective in NER tasks, but due to the reliance on large-scale labeled data. As a result, the scarcity of labeled data in a specific domain will limit its application.Therefore, many researches started to introduce few-shot methods and achieved some results. However, the entity structures in specific domains are often complex, and the current few-shot methods are difficult to adapt to NER tasks with complex features.Taking the Chinese coal chemical industry domain as an example,there exists a complex structure of multiple entities sharing a single entity, as well as multiple relationships for the same pair of entities, which affects the NER task under the sample less condition.In this paper, we propose a Large Language Models (LLMs)-based entity recognition framework LLM-DER for the domain-specific entity recognition problem in Chinese, which enriches the entity information by generating a list of relationships containing entity types through LLMs, and designing a plausibility and consistency evaluation method to remove misrecognized entities, which can effectively solve the complex structural entity recognition problem in a specific domain.The experimental results of this paper on the Resume dataset and the self-constructed coal chemical dataset Coal show that LLM-DER performs outstandingly in domain-specific entity recognition, not only outperforming the existing GPT-3.5-turbo baseline, but also exceeding the fully-supervised baseline, verifying its effectiveness in entity recognition.
- Abstract(参考訳): ドメイン固有のエンティティとそのカテゴリを認識することを目的としているドメイン固有の名前付きエンティティ認識(NER)は、ドメイン知識グラフを構築するための重要なサポートを提供する。
現在、ディープラーニングベースの手法は、大規模なラベル付きデータに依存するため、NERタスクに広く使われ、効果的である。
その結果、特定の領域におけるラベル付きデータの不足は適用を制限し、これまで多くの研究が数発の手法を導入し、いくつかの成果を上げてきた。
しかし、特定のドメインのエンティティ構造はしばしば複雑であり、現在の数発の手法は複雑な特徴を持つNERタスクに適応することが困難である。例えば、中国石炭化学工業ドメインを例に挙げると、単一のエンティティを共有する複数のエンティティの複雑な構造と同一のエンティティの複数の関係があり、サンプルの少ない条件下でNERタスクに影響を与える。本論文では、LLMを通してエンティティタイプを含むエンティティの一覧を生成し、誤認識されたエンティティを効果的に解決するための可視性および整合性評価手法を設計し、本研究の結果、自己構築されたデータセットとLLM-DERは、既存のドメイン固有エンティティ認識問題に対して、LLM-DERを有効に活用するだけでなく、その実体情報を充実させ、かつ、その実体を具体化していることを示す。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity Recognition [3.695767900907561]
CLLMFSは、Few-Shot Named Entity RecognitionのためのContrastive LearningEnhanced Large Language Modelフレームワークである。
Low-Rank Adaptation (LoRA)と、数発のNER用に特別に調整された対照的な学習メカニズムを統合している。
提案手法は,F1スコアの現行性能を2.58%から97.74%まで向上させた。
論文 参考訳(メタデータ) (2024-08-23T04:44:05Z) - ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language Models [25.68491572293656]
大規模言語モデルは、名前付きエンティティ認識のような構造化された知識抽出タスクにおいて不足する。
本稿では,より優れたNERデータセットを生成するため,LCMを質素なNER能力で活用するための革新的で費用効率のよい戦略について検討する。
論文 参考訳(メタデータ) (2024-03-17T06:12:43Z) - Named Entity Recognition Under Domain Shift via Metric Learning for Life Sciences [55.185456382328674]
名前付きエンティティ認識モデルの拡張のための転写学習の適用性について検討する。
本モデルでは,(1)アノテートイベントからの知識を付加してエンティティ間の関係を確立するソースドメインにおけるエンティティグループ化,2) 対象ドメインにおけるエンティティの識別を擬似ラベリングとコントラスト学習に頼って,2つのドメイン内のエンティティ間の識別を強化する,という2つの段階で構成されている。
論文 参考訳(メタデータ) (2024-01-19T03:49:28Z) - Inspire the Large Language Model by External Knowledge on BioMedical
Named Entity Recognition [3.427366431933441]
大規模言語モデル(LLM)は多くのNLPタスク、特に生成タスクにおいて支配的な性能を示す。
LLMを利用して、バイオメディカルNERタスクをエンティティスパン抽出とエンティティタイプ決定に分解する。
実験の結果,2段階のBioNERアプローチでは,以前の数発のLDMベースラインと比較して有意な改善が見られた。
論文 参考訳(メタデータ) (2023-09-21T17:39:53Z) - Named Entity Recognition via Machine Reading Comprehension: A Multi-Task
Learning Approach [50.12455129619845]
Named Entity Recognition (NER) は、テキスト内のエンティティの参照を事前に定義された型に抽出し、分類することを目的としている。
我々は,MRCベースのNERを改善するために,エンティティタイプ間のラベル依存性をマルチタスク学習フレームワークに組み込むことを提案する。
論文 参考訳(メタデータ) (2023-09-20T03:15:05Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - Locate and Label: A Two-stage Identifier for Nested Named Entity
Recognition [9.809157050048375]
名前付きエンティティ認識のための2段階エンティティ識別子を提案する。
まず、シードスパンのフィルタリングと境界回帰によってスパン提案を生成し、エンティティの特定を行い、それに対応するカテゴリで境界調整スパン提案をラベル付けする。
本手法は,訓練中のエンティティの境界情報と部分マッチングスパンを効果的に活用する。
論文 参考訳(メタデータ) (2021-05-14T12:52:34Z) - Learning causal representations for robust domain adaptation [31.261956776418618]
多くの現実世界のアプリケーションでは、ターゲットのドメインデータが常に利用できるとは限らない。
本稿では,学習段階において対象ドメインデータが利用できない場合について検討する。
本稿では,深層オートエンコーダと因果構造学習を統一モデルに統合したCausal AutoEncoder (CAE)を提案する。
論文 参考訳(メタデータ) (2020-11-12T11:24:03Z) - Zero-Resource Cross-Domain Named Entity Recognition [68.83177074227598]
既存のドメイン名付きエンティティ認識モデルは、多くのラベルなしコーパスや、ターゲットドメイン内のラベル付きNERトレーニングデータに依存している。
外部リソースを一切使用しないドメイン間NERモデルを提案する。
論文 参考訳(メタデータ) (2020-02-14T09:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。