論文の概要: AALF: Almost Always Linear Forecasting
- arxiv url: http://arxiv.org/abs/2409.10142v1
- Date: Mon, 16 Sep 2024 10:13:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:00:03.478965
- Title: AALF: Almost Always Linear Forecasting
- Title(参考訳): AALF:ほぼ常に線形予測
- Authors: Matthias Jakobs, Thomas Liebig,
- Abstract要約: 単純なモデルではほとんどの場合十分な時間で十分であり,特定の予測に対してのみDeep Learning法を選択することで,予測性能を向上させることができる,と我々は主張する。
実世界の様々なデータセットに関する実証的研究により、我々の選択手法は、ほとんどの場合、最先端のオンラインモデル選択方法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 3.336367986372977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works for time-series forecasting more and more leverage the high predictive power of Deep Learning models. With this increase in model complexity, however, comes a lack in understanding of the underlying model decision process, which is problematic for high-stakes decision making. At the same time, simple, interpretable forecasting methods such as Linear Models can still perform very well, sometimes on-par, with Deep Learning approaches. We argue that simple models are good enough most of the time, and forecasting performance can be improved by choosing a Deep Learning method only for certain predictions, increasing the overall interpretability of the forecasting process. In this context, we propose a novel online model selection framework which uses meta-learning to identify these predictions and only rarely uses a non-interpretable, large model. An extensive empirical study on various real-world datasets shows that our selection methodology outperforms state-of-the-art online model selections methods in most cases. We find that almost always choosing a simple Linear Model for forecasting results in competitive performance, suggesting that the need for opaque black-box models in time-series forecasting is smaller than recent works would suggest.
- Abstract(参考訳): 近年の時系列予測の研究は、ディープラーニングモデルの高い予測力をますます活用している。
しかし、このモデル複雑さの増加により、基礎となるモデル決定プロセスの理解が欠如する。
同時に、線形モデルのような単純で解釈可能な予測手法は、Deep Learningアプローチで、時にはオンパーで、非常によく機能する。
我々は,単純なモデルではほとんどの時間で十分であり,特定の予測に対してのみDeep Learning法を選択することで予測性能を向上し,予測プロセスの全体的な解釈可能性を高めることができると主張している。
本稿では,メタラーニングを用いてこれらの予測を識別する新しいオンラインモデル選択フレームワークを提案する。
様々な実世界のデータセットに関する広範な実証研究により、我々の選択手法は、ほとんどの場合、最先端のオンラインモデル選択方法よりも優れていることが示された。
この結果から,時系列予測における不透明なブラックボックスモデルの必要性が,近年の成果よりも小さいことが示唆された。
関連論文リスト
- Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
提案手法は,任意の長さの未知の負荷時間列に迅速に適応し,一般化することができる。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-09T18:59:08Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Plan To Predict: Learning an Uncertainty-Foreseeing Model for
Model-Based Reinforcement Learning [32.24146877835396]
本稿では,モデルロールアウト処理を逐次決定問題として扱うフレームワークであるemphPlan To Predict (P2P)を提案する。
P2Pは、いくつかの課題のあるベンチマークタスクにおいて最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-01-20T10:17:22Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - A Simple and Interpretable Predictive Model for Healthcare [0.0]
ディープラーニングモデルは、現在、病気予測のための最先端のソリューションの大半を支配しています。
トレーニング可能なパラメータが数百万に分散したこれらのディープラーニングモデルは、トレーニングとデプロイに大量の計算とデータを必要とします。
EHRデータに適用するための,より単純かつ解釈可能な非深層学習モデルを開発した。
論文 参考訳(メタデータ) (2020-07-27T08:13:37Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。