論文の概要: LLMs4OL 2024 Overview: The 1st Large Language Models for Ontology Learning Challenge
- arxiv url: http://arxiv.org/abs/2409.10146v1
- Date: Mon, 16 Sep 2024 10:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 16:00:03.469698
- Title: LLMs4OL 2024 Overview: The 1st Large Language Models for Ontology Learning Challenge
- Title(参考訳): LLMs4OL 2024: オントロジー学習のための第1次大規模言語モデルの概要
- Authors: Hamed Babaei Giglou, Jennifer D'Souza, Sören Auer,
- Abstract要約: 本稿では,オントロジー学習のための大規模言語モデル(LLs4OL)の第1版について概説する。
LLs4OLは、第23回国際セマンティックウェブ会議(ISWC)と共同で設立されたコミュニティ開発イニシアチブである。
この課題は、オントロジー学習(OL)の理解と革新を促進することを目的としており、セマンティックウェブの目標と整合して、よりインテリジェントでユーザフレンドリーなWebを作ることである。
- 参考スコア(独自算出の注目度): 0.16385815610837165
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper outlines the LLMs4OL 2024, the first edition of the Large Language Models for Ontology Learning Challenge. LLMs4OL is a community development initiative collocated with the 23rd International Semantic Web Conference (ISWC) to explore the potential of Large Language Models (LLMs) in Ontology Learning (OL), a vital process for enhancing the web with structured knowledge to improve interoperability. By leveraging LLMs, the challenge aims to advance understanding and innovation in OL, aligning with the goals of the Semantic Web to create a more intelligent and user-friendly web. In this paper, we give an overview of the 2024 edition of the LLMs4OL challenge and summarize the contributions.
- Abstract(参考訳): 本稿では,Large Language Models for Ontology Learning Challengeの第1版であるLLMs4OL 2024の概要を紹介する。
LLMs4OLは、オントロジー学習(OL)における大規模言語モデル(LLM)の可能性を探るため、第23回国際セマンティックウェブ会議(ISWC)と共同で設立されたコミュニティ開発イニシアチブである。
LLMを活用することで、この課題は、セマンティックWebの目標と整合して、よりインテリジェントでユーザフレンドリなWebを作ることによって、OLの理解と革新を促進することを目的としています。
本稿では,LLMs4OLの2024年版の概要とコントリビューションについて概説する。
関連論文リスト
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - A Survey of Large Language Models for European Languages [4.328283741894074]
大規模言語モデル(LLM)は、多岐にわたる自然言語処理における高い性能のため、大きな注目を集めている。
LLaMA, PaLM, GPT, MoE など LLM ファミリーの概要を報告する。
大規模言語モデルの事前学習に使用される共通単言語および多言語データセットの包括的要約を提供する。
論文 参考訳(メタデータ) (2024-08-27T13:10:05Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLaMAntino: LLaMA 2 Models for Effective Text Generation in Italian
Language [7.214355350362308]
LLaMA(Large Language Model Meta AI)ファミリーは、自然言語処理の分野での新しい進歩を表現している。
本研究は, イタリア語LLMの新しいLLaMAファミリーを導入することで, イタリア語の言語適応戦略に寄与する。
論文 参考訳(メタデータ) (2023-12-15T18:06:22Z) - Online Advertisements with LLMs: Opportunities and Challenges [51.96140910798771]
本稿では,オンライン広告システムにおけるLarge Language Models(LLM)の活用の可能性について検討する。
提案手法は,LLM広告の修正,入札,予測,オークションモジュールから構成される。
論文 参考訳(メタデータ) (2023-11-11T02:13:32Z) - The Quo Vadis of the Relationship between Language and Large Language
Models [3.10770247120758]
LLM(Large Language Models)は、LLMを言語科学モデルとして採用することを奨励している。
透明性に欠ける科学的モデルの導入によって引き起こされる最も重要な理論的および経験的リスクを特定します。
現在の開発段階において、LLMは言語に関する説明をほとんど提供していないと結論付けている。
論文 参考訳(メタデータ) (2023-10-17T10:54:24Z) - LLMs4OL: Large Language Models for Ontology Learning [0.0]
大規模言語モデル(LLM)をオントロジー学習(OL)に用いるLLMs4OLアプローチを提案する。
LLMは自然言語処理の大幅な進歩を示し、異なる知識領域における複雑な言語パターンをキャプチャする能力を示している。
評価には、WordNetにおける語彙的知識、GeoNamesにおける地理的知識、UMLSにおける医学知識など、様々なオントロジ的知識のジャンルが含まれる。
論文 参考訳(メタデータ) (2023-07-31T13:27:21Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。