Quantifying non-Markovianity via local quantum Fisher information
- URL: http://arxiv.org/abs/2409.10163v1
- Date: Mon, 16 Sep 2024 10:53:05 GMT
- Title: Quantifying non-Markovianity via local quantum Fisher information
- Authors: Yassine Dakir, Abdallah Slaoui, Lalla Btissam Drissi, Rachid Ahl Laamara,
- Abstract summary: We present a novel metric for quantifying non-Markovianity based on local quantum Fisher information (LQFI)
By comparing the LQFI-based measure to the LQU-based measure, we demonstrate its effectiveness in detecting non-Markovianity.
We show that a positive time derivative of LQFI signals the flow of information from the environment to the system.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Non-Markovian dynamics in open quantum systems arise when the system's evolution is influenced by its past interactions with the environment. Here, we present a novel metric for quantifying non-Markovianity based on local quantum Fisher information (LQFI). The proposed metric offers a distinct perspective compared to existing measures, providing a deeper understanding of information flow between the system and its environment. By comparing the LQFI-based measure to the LQU-based measure, we demonstrate its effectiveness in detecting non-Markovianity and its ability to capture the degree of non-Markovian behavior in various quantum channels. Furthermore, we show that a positive time derivative of LQFI signals the flow of information from the environment to the system, providing a clear interpretation of non-Markovian dynamics. Finally, the computational efficiency of the LQFI-based measure makes it a practical tool for characterizing non-Markovianity in diverse physical systems.
Related papers
- Dynamics of Quantum Coherence and Non-Classical Correlations in Open Quantum System Coupled to a Squeezed Thermal Bath [0.0]
We investigate the dynamics of quantum coherence and non-classical correlations in a two-qubit open quantum system coupled to a squeezed thermal reservoir.
Our findings demonstrate that non-classical correlations such as quantum consonance, quantum discord, local quantum uncertainty, and quantum Fisher information are highly sensitive to the collective regime.
This work bridges theoretical advancements with real-world applications, offering a comprehensive framework for leveraging quantum resources under the influence of environmental decoherence.
arXiv Detail & Related papers (2024-12-19T14:46:09Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [43.80709028066351]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Quantifying quantum non-Markovianity based on quantum coherence via skew
information [1.8969868190153274]
We propose a non-Markovianity measure for open quantum processes.
We find that it is equivalent to the three previous measures of non-Markovianity for phase damping and amplitude damping channels.
We also use the modified Tsallis relative $alpha$ entropy of coherence to detect the non-Markovianity of dynamics of quantum open systems.
arXiv Detail & Related papers (2020-01-05T15:37:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.